×

Discrete Hamilton-Jacobi theory for systems with external forces. (English) Zbl 1506.70036

Summary: This paper is devoted to discrete mechanical systems subject to external forces. We introduce a discrete version of systems with Rayleigh-type forces, obtain the equations of motion and characterize the equivalence for these systems. Additionally, we obtain a Noether’s theorem and other theorem characterizing the Lie subalgebra of symmetries of a forced discrete Lagrangian system. Moreover, we develop a Hamilton-Jacobi theory for forced discrete Hamiltonian systems. These results are useful for the construction of so-called variational integrators, which, as we illustrate with some examples, are remarkably superior to the usual numerical integrators such as the Runge-Kutta method.

MSC:

70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems

References:

[1] Abraham, R.; Marsden, J., Foundations of Mechanics (2008), Providence, RI: American Mathematical Society, Providence, RI
[2] Bloch, A.; Krishnaprasad, P. S.; Marsden, J. E.; Ratiu, T. S., The Euler-Poincaré equations and double bracket dissipation, Commun. Math. Phys., 175, 1-42 (1996) · Zbl 0846.58048 · doi:10.1007/bf02101622
[3] Butcher, J. C., Runge-Kutta methods, Numerical Methods for Ordinary Differential Equations, 143-331 (2016), New York: Wiley, New York
[4] Cresson, J.; Pierret, F., Continuous versus discrete structures: I. Discrete embeddings and ordinary differential equations (2014)
[5] Cresson, J.; Pierret, F., Continuous versus discrete structures: II. Discrete Hamiltonian systems and Helmholtz conditions (2015)
[6] de León, M.; Lainz, M.; López-Gordón, A., Symmetries, constants of the motion, and reduction of mechanical systems with external forces, J. Math. Phys., 62 (2021) · Zbl 1481.70067 · doi:10.1063/5.0045073
[7] de León, M.; Lainz, M.; López-Gordón, A., Geometric Hamilton-Jacobi theory for systems with external forces, J. Math. Phys., 63 (2022) · Zbl 1507.70027 · doi:10.1063/5.0073214
[8] de León, M.; Sardón, C., Geometry of the discrete Hamilton-Jacobi equation: applications in optimal control, Rep. Math. Phys., 81, 39-63 (2018) · Zbl 1398.70040 · doi:10.1016/s0034-4877(18)30019-3
[9] Martín de Diego, D.; Sato Martín de Almagro, R. T., Variational order for forced Lagrangian systems, Nonlinearity, 31, 3814-3846 (2018) · Zbl 1398.65336 · doi:10.1088/1361-6544/aac5a6
[10] Martín de Diego, D.; Sato Martín de Almagro, R. T., Variational order for forced Lagrangian systems: II. Euler-Poincaré equations with forcing, Nonlinearity, 33, 3709-3738 (2020) · Zbl 1442.65443 · doi:10.1088/1361-6544/ab8bb1
[11] Fernandez, J.; Tori, C.; Zuccalli, M., Lagrangian reduction of discrete mechanical systems by stages, J. Geom. Mech., 8, 35-70 (2016) · Zbl 1333.37071 · doi:10.3934/jgm.2016.8.35
[12] Fernández, J.; Tori, C.; Zuccalli, M., Lagrangian reduction of nonholonomic discrete mechanical systems by stages, J. Geom. Mech., 12, 607-639 (2020) · Zbl 1480.37074 · doi:10.3934/jgm.2020029
[13] Galley, C. R.; Tsang, D.; Stein, L. C., The principle of stationary nonconservative action for classical mechanics and field theories (2014)
[14] Godbillon, C., Géométrie Différentielle et Mécanique Analytique (1969), Paris: Hermann, Paris · Zbl 0174.24602
[15] Hairer, E.; Lubich, C., Invariant tori of dissipatively perturbed Hamiltonian systems under symplectic discretization, Appl. Numer. Math., 29, 57-71 (1999) · Zbl 1022.37042 · doi:10.1016/s0168-9274(98)00029-4
[16] Jalnapurkar, S. M.; Leok, M.; Marsden, J. E.; West, M., Discrete Routh reduction, J. Phys. A: Math. Gen., 39, 5521-5544 (2006) · Zbl 1090.37042 · doi:10.1088/0305-4470/39/19/s12
[17] Lanczos, C., The Variational Principles of Mechanics (1986), New York: Dover, New York · Zbl 1198.70001
[18] Lee, T., Optimal control of partitioned hybrid systems via discrete-time Hamilton-Jacobi theory, Automatica, 50, 2062-2069 (2014) · Zbl 1297.49059 · doi:10.1016/j.automatica.2014.05.024
[19] de León, M.; Rodrigues, P. R., Methods of Differential Geometry in Analytical Mechanics (1989), Amsterdam: North-Holland, Amsterdam · Zbl 0687.53001
[20] Lew, A.; Marsden, J. E.; Ortiz, M.; West, M., Variational time integrators, Int. J. Numer. Methods Eng., 60, 153-212 (2004) · Zbl 1060.70500 · doi:10.1002/nme.958
[21] López-Gordón, A., The geometry of Rayleigh dissipation, MA Thesis (2021)
[22] Marrero, J. C.; de Diego, D. M.; Martínez, E., Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19, 1313-1348 (2006) · Zbl 1162.17312 · doi:10.1088/0951-7715/19/6/006
[23] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327 · doi:10.1017/s096249290100006x
[24] Newman, M. E J., Computational Physics (2013), Scotts Valley, California: Createspace Independent Publishing, Scotts Valley, California
[25] Ohsawa, T.; Bloch, A. M.; Leok, M., Discrete Hamilton-Jacobi theory, SIAM J. Control Optim., 49, 1829-1856 (2011) · Zbl 1286.70025 · doi:10.1137/090776822
[26] Ortega, J-P; Ratiu, T. S., Momentum Maps and Hamiltonian Reduction (2004), Boston, MA: Birkhäuser, Boston, MA · Zbl 1241.53069
[27] Sato Martín de Almagro, R. T., Discrete mechanics for forced and constrained systems, Thesis (2020)
[28] Fernández, J.; Zurita, S. E G.; Grillo, S., J. Geom. Mech., 13, 533 (2021) · Zbl 1491.37071 · doi:10.3934/jgm.2021017
[29] López‐Gordón, A. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.