×

Mesh quality metrics for isogeometric Bernstein-Bézier discretizations. (English) Zbl 1506.65208

Summary: High-order finite element methods harbor the potential to deliver improved accuracy per degree of freedom versus low-order methods. Their success, however, hinges upon the use of a curvilinear mesh of not only sufficiently high accuracy but also sufficiently high quality. In this paper, theoretical results are presented quantifying the impact of mesh parameterization on the accuracy of a high-order finite element approximation, and a formal definition of shape regularity is introduced for curvilinear meshes based on these results. This formal definition of shape regularity in turn inspires a new set of quality metrics for curvilinear finite elements. Computable bounds are established for these quality metrics using the Bernstein-Bézier form, and a new curvilinear mesh optimization procedure is proposed based on these bounds. Numerical results confirming the importance of shape regularity in the context of high-order finite element methods are presented, and numerical results demonstrating the promise of the proposed curvilinear mesh optimization procedure are also provided. The theoretical results in this paper apply to any piecewise-polynomial or piecewise-rational finite element method posed on a mesh of polynomial or rational mapped simplices and hypercubes. As such, they apply not only to classical continuous Galerkin finite element methods but also to discontinuous Galerkin finite element methods and even isogeometric methods based on NURBS, T-splines, or hierarchical B-splines.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)

Software:

ISOGAT

References:

[1] Sherwin, S. J.; Peiró, J., Mesh generation in curvilinear domains using high-order elements, Internat. J. Numer. Methods Engrg., 53, 207-223 (2002) · Zbl 1082.74553
[2] Bramble, J.; Hilbert, S., Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., 7, 112-124 (1970) · Zbl 0201.07803
[3] Prautzsch, H.; Boehm, W.; Paluszny, M., Bézier and B-spline Techniques (2013), Springer Science & Business Media
[4] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[5] Michoski, C.; Chan, J.; Engvall, L.; Evans, J. A., Foundations of the blended isogeometric discontinuous Galerkin (BIDG) method, Comput. Methods Appl. Mech. Engrg., 305, 658-681 (2016) · Zbl 1425.65171
[6] Engvall, L.; Evans, J. A., Isogeometric triangular Bernstein-Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis, Comput. Methods Appl. Mech. Engrg., 304, 378-407 (2016) · Zbl 1425.65157
[7] Engvall, L.; Evans, J. A., Isogeometric unstructured tetrahedral and mixed-element Bernstein-Bézier discretizations, Comput. Methods Appl. Mech. Engrg., 319, 83-123 (2017) · Zbl 1439.65013
[8] Xia, S.; Qian, X., Isogeometric analysis with Bézier tetrahedra, Comput. Methods Appl. Mech. Engrg., 316, 782-816 (2017) · Zbl 1439.65019
[9] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[10] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554-3567 (2011) · Zbl 1239.65013
[11] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229-263 (2010) · Zbl 1227.74123
[12] Dey, S.; O’Bara, R. M.; Shephard, M. S., Curvilinear mesh generation in 3D, (Proceedings of the Eighth International Meshing Roundtable (1999), John Wiley & Sons), 407-417
[13] Gravesen, J.; Evgrafov, A.n; Nguyen, D.-M.; Nørtoft, P., Planar parametrization in isogeometric analysis, (International Conference on Mathematical Methods for Curves and Surfaces (2012), Springer), 189-212 · Zbl 1356.65157
[14] P.-O. Persson, J. Peraire, Curved mesh generation and mesh refinement using Lagrangian solid mechanics, in: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2008.
[15] Cohen, E.; Martin, T.; Kirby, R. M.; Lyche, T.; Riesenfeld, R. F., Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 334-356 (2010) · Zbl 1227.74109
[16] Escobar, J. M.; Cascón, J. M.; Rodríguez, E.; Montenegro, R., A new approach to solid modeling with trivariate T-splines based on mesh optimization, Comput. Methods Appl. Mech. Engrg., 200, 3210-3222 (2011) · Zbl 1230.74223
[17] Gargallo-Peiró, A.; Roca, X.; Peraire, J.; Sarrate, J., Distortion and quality measures for validating and generating high-order tetrahedral meshes, Eng. Comput., 31, 423-437 (2015) · Zbl 1352.65609
[18] Gargallo-Peiró, A.; Roca, X.; Peraire, J.; Sarrate, J., Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes, Internat. J. Numer. Methods Engrg., 103, 342-363 (2015) · Zbl 1352.65609
[19] George, P.l.; Borouchaki, H., Construction of tetrahedral meshes of degree two, Internat. J. Numer. Methods Engrg., 90, 1156-1182 (2012) · Zbl 1242.74117
[20] Lamata, P.; Roy, I.; Blazevic, B.; Crozier, A.; Land, S.; Niederer, S. A.; Hose, D. R.; Smith, N. P., Quality metrics for high order meshes: Analysis of the mechanical simulation of the heart beat, IEEE Trans. Med. Imaging, 32, 130-138 (2013)
[21] Poya, R.; Sevilla, R.; Gil, A. J., A unified approach for a posteriori high-order curved mesh generation using solid mechanics, Comput. Mech., 58, 457-490 (2016) · Zbl 1398.74472
[22] Roca, X.; Gargallo-Peiró, A.; Sarrate, J., Defining quality measures for high-order planar triangles and curved mesh generation, (Proceedings of the 20th International Meshing Roundtable (2011), Springer: Springer Berlin, Heidelberg), 365-383
[23] Speleers, H.; Manni, C., Optimizing domain parameterization in isogeometric analysis based on Powell-sabin splines, J. Comput. Appl. Math., 289, 68-86 (2015) · Zbl 1317.65055
[24] Xia, S.; Qian, X., Generating high-quality high-order parameterization for isogeometric analysis on triangulations, Comput. Methods Appl. Mech. Engrg., 338, 1-26 (2018) · Zbl 1440.65235
[25] Xie, Z. Q.; Sevilla, R.; Hassan, O.; Morgan, K., The generation of arbitrary order curved meshes for 3D finite element analysis, Comput. Mech., 51, 361-374 (2013)
[26] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput. Aided Des., 45, 812-821 (2013)
[27] Xu, G.; Mourrain, B.; Galligo, A.; Rabczuk, T., High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods, Comput. Mech., 54, 1303-1313 (2014) · Zbl 1311.65020
[28] Zhang, Y.; Wang, W.; Hughes, T. J.R., Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249, 185-197 (2012) · Zbl 1348.65057
[29] Bramble, J. H.; Hilbert, S. R., Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16, 362-369 (1971) · Zbl 0214.41405
[30] Ciarlet, P. G.; Raviart, P. A., General Lagrange and Hermite interpolation in \(R^n\) with applications to finite element methods, Arch. Ration. Mech. Anal., 46, 177-199 (1972) · Zbl 0243.41004
[31] Ciarlet, P. G.; Raviart, P. A., Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg., 1, 217-249 (1972) · Zbl 0261.65079
[32] Zlámal, M., Curved elements in the finite element method. I, SIAM J. Numer. Anal., 10, 229-240 (1973) · Zbl 0285.65067
[33] Zlámal, M., Curved elements in the finite element method. II, SIAM J. Numer. Anal., 11, 347-362 (1974) · Zbl 0277.65064
[34] Babuška, I.; Aziz, A., On the angle condition in the finite element method, SIAM J. Numer. Anal., 13, 214-226 (1976) · Zbl 0324.65046
[35] Oden, J. T.; Reddy, J. N., An Introduction to the Mathematical Theory of Finite Elements (2012), Courier Corporation · Zbl 0336.35001
[36] Johnen, A.; Remacle, J.-F.; Geuzaine, C., Geometrical validity of curvilinear finite elements, J. Comput. Phys., 233, 359-372 (2013)
[37] Bazilevs, Y.; Beirão Da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: Approximation, stability and error estimates for \(h\)-refined meshes, Math. Models Methods Appl. Sci., 16, 1031-1090 (2006) · Zbl 1103.65113
[38] Clément, P., Approximation by finite element functions using local regularization, Rev. Fr. Autom. Inform. Rech. Oper., 9, 77-84 (1975) · Zbl 0368.65008
[39] Constantine, G. M.; Savits, T. H., A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc., 348, 503-520 (1996) · Zbl 0846.05003
[40] Dobrev, V.; Knupp, P.; Kolev, T.; Mittal, K.; Tomov, V., The target-matrix optimization paradigm for high-order meshes, SIAM J. Sci. Comput., 41, B50-B68 (2019) · Zbl 1450.65109
[41] Field, D. A., Laplacian smoothing and Delaunay triangulations, Commun. Appl. Numer. Methods, 4, 709-712 (1988) · Zbl 0664.65107
[42] Helenbrook, B. T., Mesh deformation using the biharmonic operator, Internat. J. Numer. Methods Engrg., 56, 1007-1021 (2003) · Zbl 1047.76044
[43] Sahni, O.; Jansen, K. E.; Shephard, M. S.; Taylor, C. A.; Beall, M. W., Adaptive boundary layer meshing for viscous flow simulations, Eng. Comput., 24, 267 (2008)
[44] Sahni, O.; Luo, X. J.; Jansen, K. E.; Shephard, M. S., Curved boundary layer meshing for adaptive viscous flow simulations, Finite Elem. Anal. Des., 46, 132-139 (2010)
[45] Remacle, J.-F.; Lambrechts, J.; Geuzaine, C.; Toulorge, T., Optimizing the geometrical accuracy of 2D curvilinear meshes, Procedia Eng., 82, 228-239 (2014), 23rd International Meshing Roundtable (IMR23)
[46] Toulorge, T.; Geuzaine, C.; Remacle, J.-F.; Lambrechts, J., Robust untangling of curvilinear meshes, J. Comput. Phys., 254, 8-26 (2013) · Zbl 1349.65670
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.