×

Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations. (English) Zbl 1506.65152

Summary: We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76R50 Diffusion
35Q35 PDEs in connection with fluid mechanics

Software:

Matlab
Full Text: DOI

References:

[1] Adjerid, S.; Baccouch, M., A superconvergent local discontinuous Galerkin method for elliptic problems, J. Sci. Comput., 52, 1, 113-152 (2012) · Zbl 1255.65207 · doi:10.1007/s10915-011-9537-8
[2] Aguilera, A.; Castillo, P.; Gómez, S., Structure preserving-field directional splitting difference methods for nonlinear Schrödinger systems, Appl. Math. Lett., 119, 107211 (2021) · Zbl 1496.65101 · doi:10.1016/j.aml.2021.107211
[3] Ahmadinia, M.; Safari, Z.; Fouladi, S., Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations, BIT Numer. Math., 58, 3, 533-554 (2018) · Zbl 1398.65243 · doi:10.1007/s10543-018-0697-x
[4] Azerad, P.; Bouharguane, A.; Crouzet, J., Simultaneous denoising and enhancement of signals by a fractal conservation law, Commun. Nonlinear Sci. Numer. Simul., 17, 2, 867-881 (2012) · Zbl 1246.60062 · doi:10.1016/j.cnsns.2011.07.001
[5] Baccouch, M., A superconvergent local discontinuous Galerkin method for the second-order wave equation on Cartesian grids, Comput. Math. Applic., 68, 10, 1250-1278 (2014) · Zbl 1367.65140 · doi:10.1016/j.camwa.2014.08.023
[6] Balmforth, NJ; Provenzale, A., Geomorphological Fluid Mechanics, vol. 582, 582-582 (2001), Berlin: Verlag, Berlin · Zbl 1169.76433 · doi:10.1007/3-540-45670-8
[7] Castillo, P.; Cockburn, B.; Schötzau, D.; Schwab, C., Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comput., 71, 238, 455-478 (2002) · Zbl 0997.65111 · doi:10.1090/S0025-5718-01-01317-5
[8] Castillo, P.; Gómez, S., Interpolatory super-convergent discontinuous Galerkin methods for nonlinear reaction diffusion equations on three dimensional domains, Commun. Nonlinear Sci. Numer. Simul., 90, 105388 (2020) · Zbl 1452.65153 · doi:10.1016/j.cnsns.2020.105388
[9] Castillo, P.; Gómez, S., An interpolatory directional splitting-local discontinuous Galerkin method with application to pattern formation in 2D/3D, Appl. Math. Comput., 397, 125984 (2021) · Zbl 1508.65126
[10] Chavent, G.; Cockburn, B., The local projection p0 − p1-discontinuous-Galerkin finite element method for scalar conservation laws, ESAIM: Math. Modell. Numer. Anal., 23, 4, 565-592 (1989) · Zbl 0715.65079 · doi:10.1051/m2an/1989230405651
[11] Chen, J.; Ge, Y., High order locally one-dimensional methods for solving two-dimensional parabolic equations, Adv. Diff. Equa., 2018, 361, 1-17 (2018) · Zbl 1448.65094
[12] Ciarlet, PG, The finite element method for elliptic problems, vol. 40 (2002), North-Holland: SIAM, North-Holland · doi:10.1137/1.9780898719208
[13] Cockburn, B.; Dong, B., An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems, J. Sci. Comput., 32, 2, 233-262 (2007) · Zbl 1143.76031 · doi:10.1007/s10915-007-9130-3
[14] Cockburn, B.; Kanschat, G.; Perugia, I.; Schötzau, D., Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39, 1, 264-285 (2001) · Zbl 1041.65080 · doi:10.1137/S0036142900371544
[15] Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, pp. 3-50. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000) · Zbl 0989.76045
[16] Cockburn, B.; Shu, CW, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[17] Cockburn, B.; Shu, CW, The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[18] Cockburn, B.; Shu, CW, Runge-kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135 · doi:10.1023/A:1012873910884
[19] Dong, B.; Shu, CW, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems, SIAM J. Numer. Anal., 47, 5, 3240-3268 (2009) · Zbl 1204.65123 · doi:10.1137/080737472
[20] Eymard, R.; Hilhorst, D.; Vohralík, M., A combined finite volume-finite element scheme for the discretization of strongly nonlinear convection-diffusion-reaction problems on nonmatching grids, Numer. Methods Partial Diff. Equa., 26, 3, 612-646 (2010) · Zbl 1192.65117
[21] Ganesan, S.; Tobiska, L., Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems, Appl. Math. Comput., 219, 11, 6182-6196 (2013) · Zbl 1273.65144
[22] Hesthaven, JS; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications (2007), New York: Springer, New York
[23] Hundsdorfer, W., Verwer, J.G.: Numerical solution of time-dependent advection-diffusion-reaction equations, vol. 33. Springer (2013) · Zbl 1030.65100
[24] Janenko, NN, The method of fractional steps, vol. 160 (1971), Berlin: Springer, Berlin · Zbl 0209.47103 · doi:10.1007/978-3-642-65108-3
[25] Kamga, J-BA; Després, B., CFL condition and boundary conditions for DGM approximation of convection-diffusion, SIAM J. Numer. Anal., 44, 6, 2245-2269 (2006) · Zbl 1129.65066 · doi:10.1137/050633159
[26] Klingenberg, C.; Schnücke, G.; Xia, Y., Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension, Math. Comput., 86, 305, 1203-1232 (2017) · Zbl 1359.65204 · doi:10.1090/mcom/3126
[27] Knobloch, P.; Tobiska, L., The \({P}_1^{mod}\) P1mod element: A new nonconforming finite element for convection-diffusion problems, SIAM J. Numer. Anal., 41, 2, 436-456 (2003) · Zbl 1048.65111 · doi:10.1137/S0036142902402158
[28] Kong, L.; Zhu, P.; Wang, Y.; Zeng, Z., Efficient and accurate numerical methods for the multidimensional convection-diffusion equations, Math. Comput. Simul., 162, 179-194 (2019) · Zbl 1540.65304 · doi:10.1016/j.matcom.2019.01.014
[29] LeVeque, R.J.: Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, p. 98. SIAM (2007) · Zbl 1127.65080
[30] Li, J.; Chen, YT, Computational partial differential equations using MATLAB®; (2019), London: Chapman and Hall/CRC, London · Zbl 1429.65003 · doi:10.1201/9780429266027
[31] Li, J.; Shi, C.; Shu, CW, Optimal non-dissipative discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials, Comput. Math. Applic., 73, 8, 1760-1780 (2017) · Zbl 1370.74143 · doi:10.1016/j.camwa.2017.02.018
[32] Marchuk, G.I.: Splitting and alternating direction methods, vol. 1. Elsevier (1990) · Zbl 0875.65049
[33] Mitchell, AR; Griffiths, DF, The finite difference method in partial differential equations (1980), New York: Wiley, New York · Zbl 0417.65048
[34] Qiu, J.; Shu, CW, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 3, 907-929 (2005) · Zbl 1077.65109 · doi:10.1137/S1064827503425298
[35] Schiesser, WE; Griffiths, GW, A compendium of partial differential equation models: method of lines analysis with Matlab (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1172.65002 · doi:10.1017/CBO9780511576270
[36] Shen, W.; Zhang, C.; Zhang, J., Relaxation method for unsteady convection-diffusion equations, Comput. Math. Applic., 61, 4, 908-920 (2011) · Zbl 1217.65176 · doi:10.1016/j.camwa.2010.12.039
[37] Wang, H.; Zhang, Q.; Shu, CW, Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems, J. Sci. Comput., 81, 3, 2080-2114 (2019) · Zbl 1434.65195 · doi:10.1007/s10915-019-01072-4
[38] Wang, H.; Zhang, Q.; Wang, S.; Shu, CW, Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems, Sci. Chin. Math., 63, 1, 183-204 (2020) · Zbl 1434.65196 · doi:10.1007/s11425-018-9524-x
[39] Wang, T.; Wang, YM, A higher-order compact LOD method and its extrapolations for nonhomogeneous parabolic differential equations, Appl. Math. Comput., 237, 512-530 (2014) · Zbl 1334.65140
[40] Wang, YM, Error and extrapolation of a compact LOD method for parabolic differential equations, J. Comput. Appl. Math., 235, 5, 1367-1382 (2011) · Zbl 1205.65252 · doi:10.1016/j.cam.2010.08.024
[41] Wanner, G.; Hairer, E., Solving Ordinary Differential Equations II, vol. 375 (1996), Berlin: Springer, Berlin · Zbl 0859.65067
[42] Xu, Y.; Shu, CW; Zhang, Q., Error estimate of the fourth-order Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations, SIAM J. Numer. Anal., 58, 5, 2885-2914 (2020) · Zbl 1452.65256 · doi:10.1137/19M1280077
[43] Yan, J.; Shu, CW, Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, J. Sci. Comput., 17, 1-4, 27-47 (2002) · Zbl 1003.65115 · doi:10.1023/A:1015132126817
[44] Yeganeh, S.; Mokhtari, R.; Fouladi, S., Using a LDG method for solving an inverse source problem of the time-fractional diffusion equation, Iranian J. Numer. Anal. Optim., 7, 2, 115-135 (2017) · Zbl 1380.65231
[45] Yeganeh, S.; Mokhtari, R.; Hesthaven, JS, Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method, BIT Numer. Math., 57, 3, 685-707 (2017) · Zbl 1377.65124 · doi:10.1007/s10543-017-0648-y
[46] Yeganeh, S.; Mokhtari, R.; Hesthaven, JS, A local discontinuous Galerkin method for two-dimensional time fractional diffusion equations, Commun. Appl. Math. Comput., 2, 689-709 (2020) · Zbl 1476.65260 · doi:10.1007/s42967-020-00065-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.