×

A \(\tau \)-preconditioner for a non-symmetric linear system arising from multi-dimensional Riemann-Liouville fractional diffusion equation. (English) Zbl 1506.65054

Summary: In this paper, we study a \(\tau \)-preconditioner for non-symmetric linear system arising from a steady-state multi-dimensional Riemann-Liouville (RL) fractional diffusion equation. The generalized minimal residual (GMRES) method is applied to solve the preconditioned linear system. Theoretically, we show that the GMRES solver for the preconditioned linear system has a convergence rate independent of discretization stepsizes. To the best of our knowledge, this is the first iterative solver with stepsize-independent convergence rate for the non-symmetric linear system. The proposed \(\tau \)-preconditioner is diagonalizable by the sine transform matrix, thanks to which the matrix-vector multiplication in each iteration step can be fast implemented by the fast sine transform (FST). Hence, the total operation cost of the proposed solver for the non-symmetric problem is linearithmic. Numerical results are reported to show the efficiency of the proposed preconditioner.

MSC:

65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
15B05 Toeplitz, Cauchy, and related matrices
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Benson, DA; Wheatcraft, SW; Meerschaert, MM, Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 6, 1403-1412 (2000) · doi:10.1029/2000WR900031
[2] Bini, D., Benedetto, F.: A new preconditioner for the parallel solution of positive definite toeplitz systems. In: Proceedings of the second annual ACM Symposium on Parallel Algorithms and Architectures, pp. 220-223 (1990)
[3] del Castillo-Negrete, D.; Carreras, B.; Lynch, V., Fractional diffusion in plasma turbulence, Physics of Plasmas, 11, 8, 3854-3864 (2004) · doi:10.1063/1.1767097
[4] Çelik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 1743-1750 (2012) · Zbl 1242.65157 · doi:10.1016/j.jcp.2011.11.008
[5] Chen, MH; Deng, WH, Fourth order accurate scheme for the space fractional diffusion equations, SIAM J. Numer. Anal., 52, 1418-1438 (2014) · Zbl 1318.65048 · doi:10.1137/130933447
[6] Chen, W., A speculative study of 2/ 3-order fractional laplacian modeling of turbulence: some thoughts and conjectures, Chaos:, An Interdisciplinary Journal of Nonlinear Science, 16, 2, 023, 126 (2006) · Zbl 1146.37312 · doi:10.1063/1.2208452
[7] Dai, P.; Wu, Q.; Wang, H.; Zheng, X., An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations, J. Comput. Appl. Math., 371, 112, 673 (2020) · Zbl 1434.65110 · doi:10.1016/j.cam.2019.112673
[8] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307, 262-279 (2016) · Zbl 1352.65305 · doi:10.1016/j.jcp.2015.11.061
[9] Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics Numerical Mathematics and Scie (2014) · Zbl 1304.76002
[10] Gu, XM; Huang, TZ; Zhao, YL; Lyu, P.; Carpentieri, B., A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients, Numer. Methods Partial Differ. Equ., 37, 2, 1136-1162 (2021) · Zbl 07776007 · doi:10.1002/num.22571
[11] Hao, ZP; Sun, ZZ; Cao, WR, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281, 787-805 (2015) · Zbl 1352.65238 · doi:10.1016/j.jcp.2014.10.053
[12] Huang, X., Lin, X.L., Ng, M.K., Sun, H.W.: Spectral analysis for preconditioning of multi-dimensional riesz fractional diffusion equations. arXiv:2102.01371 (2021)
[13] Jia, J.; Wang, H.; Zheng, X., A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis, J. Comput. Appl. Math., 388, 113, 234 (2021) · Zbl 1458.65100 · doi:10.1016/j.cam.2020.113234
[14] Jia, J.; Zheng, X.; Fu, H.; Dai, P.; Wang, H., A fast method for variable-order space-fractional diffusion equations, Numer. Algorithms, 85, 4, 1519-1540 (2020) · Zbl 1456.65132 · doi:10.1007/s11075-020-00875-z
[15] Jian, HY; Huang, TZ; Zhao, XL; Zhao, YL, A fast implicit difference scheme for a new class of time distributed-order and space fractional diffusion equations with variable coefficients, Adv. Differ. Equ, 2018, 1, 1-24 (2018) · Zbl 1446.65068 · doi:10.1186/s13662-018-1655-2
[16] Jin, B.; Lazarov, R.; Pasciak, J.; Rundell, W., Variational formulation of problems involving fractional order differential operators, Math. Comput., 84, 296, 2665-2700 (2015) · Zbl 1321.65127 · doi:10.1090/mcom/2960
[17] Jin, X.Q.: Preconditioning techniques for Toeplitz systems Higher Education Press (2010)
[18] Jin, XQ; Lin, FR; Zhao, Z., Preconditioned iterative methods for two-dimensional space-fractional diffusion equations, Commun. Comput. Phys., 18, 469-488 (2015) · Zbl 1388.65057 · doi:10.4208/cicp.120314.230115a
[19] Lei, SL; Huang, YC, Fast algorithms for high-order numerical methods for space-fractional diffusion equations, Int. J. Comput. Math., 94, 5, 1062-1078 (2017) · Zbl 1378.65160 · doi:10.1080/00207160.2016.1149579
[20] Lei, SL; Sun, HW, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242, 715-725 (2013) · Zbl 1297.65095 · doi:10.1016/j.jcp.2013.02.025
[21] Lin, Xl; Ng, MK; Sun, HW, A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations, SIAM J. Matrix Anal. Appl., 38, 4, 1580-1614 (2017) · Zbl 1381.65030 · doi:10.1137/17M1115447
[22] Liu, Q.; Liu, FW; Gu, YT; Zhuang, PH; Chen, J.; Turner, I., A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation, Appl. Math. Comput., 256, 930-938 (2015) · Zbl 1339.65132
[23] Meerschaert, MM; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[24] Meerschaert, MM; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[25] Mittnik, S.; Rachev, S., Option pricing for stable and infinitely divisible asset returns, Math. Comput. Model., 29, 10-12, 93-104 (1999) · Zbl 0990.91023 · doi:10.1016/S0895-7177(99)00095-3
[26] Pan, JY; Ke, RH; Ng, MK; Sun, HW, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput., 36, A2698-A2719 (2014) · Zbl 1314.65112 · doi:10.1137/130931795
[27] Pang, HK; Sun, HW, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 693-703 (2012) · Zbl 1243.65117 · doi:10.1016/j.jcp.2011.10.005
[28] Pang, HK; Sun, HW, Fast numerical contour integral method for fractional diffusion equations, J. Sci. Comput., 66, 1, 41-66 (2016) · Zbl 1351.65058 · doi:10.1007/s10915-015-0012-9
[29] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications switzerland: gordon and breach science publishers (1993) · Zbl 0818.26003
[30] Sousa, E.; Li, C., A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90, 22-37 (2015) · Zbl 1326.65111 · doi:10.1016/j.apnum.2014.11.007
[31] Tian, WY; Zhou, H.; Deng, WH, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 84, 1703-1727 (2015) · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
[32] Wang, H.; Wang, KX; Sircar, T., A direct \(o({N}\log^2 N)\) o(N log 2N) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 8095-8104 (2010) · Zbl 1198.65176 · doi:10.1016/j.jcp.2010.07.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.