×

Diffusion-mediated absorption by partially-reactive targets: Brownian functionals and generalized propagators. (English) Zbl 1506.60085

Summary: Many processes in cell biology involve diffusion in a domain \(\Omega\) that contains a target \(\mathcal{U}\) whose boundary \(\partial\mathcal{U}\) is a chemically reactive surface. Such a target could represent a single reactive molecule, an intracellular compartment or a whole cell. Recently, a probabilistic framework for studying diffusion-mediated surface reactions has been developed that considers the joint probability density or generalized propagator for particle position and the so-called boundary local time. The latter characterizes the amount of time that a Brownian particle spends in the neighborhood of a point on a totally reflecting boundary. The effects of surface reactions are then incorporated via an appropriate stopping condition for the boundary local time. In this paper we extend the theory of diffusion-mediated absorption to cases where the whole interior target domain \(\mathcal{U}\) acts as a partial absorber rather than the target boundary \(\partial\mathcal{U}\). Now the particle can freely enter and exit \(\mathcal{U}\), and is only able to react (be absorbed) within \(\mathcal{U}\). The appropriate Brownian functional is then the occupation time (accumulated time that the particle spends within \(\mathcal{U}\)) rather than the boundary local time. We show that both cases can be considered within a unified framework, which consists of a boundary value problem (BVP) for the propagator of the corresponding Brownian functional and an associated stopping condition. We illustrate the theory by calculating the mean first passage time (MFPT) for a spherical target \(\mathcal{U}\) located at the center of a spherical domain \(\Omega\). This is achieved by solving the propagator BVP directly, rather than using spectral methods. We find that if the first moment of the stopping time density is infinite, then the MFPT is also infinite, that is, the spherical target is not sufficiently absorbing.

MSC:

60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)

References:

[1] Bressloff, P. C.; Earnshaw, B. A.; Ward, M. J., Diffusion of protein receptors on a cylindrical dendritic membrane with partially absorbing traps, SIAM J. Appl. Math., 68, 1223-1246 (2008) · Zbl 1146.92005 · doi:10.1137/070698373
[2] Bressloff, P. C., Modeling active cellular transport as a directed search process with stochastic resetting and delays, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.92062 · doi:10.1088/1751-8121/ab9fb7
[3] Bressloff, P. C., Queuing model of axonal transport, Brain Multiphys., 2 (2021) · doi:10.1016/j.brain.2021.100042
[4] Bressloff, P. C., Asymptotic analysis of extended two-dimensional narrow capture problems, Proc. R. Soc. A, 477, 20200771 (2021) · doi:10.1098/rspa.2020.0771
[5] Bressloff, P. C., Asymptotic analysis of target fluxes in the three-dimensional narrow capture problem, Multiscale Model. Simul., 19, 612-632 (2021) · Zbl 1465.35027 · doi:10.1137/20m1380326
[6] Bressloff, P. C., Stochastic Processes in Cell Biology, vol 1-2 (2022), Berlin: Springer, Berlin · Zbl 1481.92001
[7] Chevalier, C.; Bénichou, O.; Meyer, B.; Voituriez, R., First-passage quantities of Brownian motion in a bounded domain with multiple targets: a unified approach, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1207.82020 · doi:10.1088/1751-8113/44/2/025002
[8] Collins, F. C.; Kimball, G. E., Diffusion-controlled reaction rates, J. Colloid Sci., 4, 425-437 (1949) · doi:10.1016/0095-8522(49)90023-9
[9] Coombs, D.; Straube, R.; Ward, M., Diffusion on a sphere with Localized traps: mean first passage time, eigenvalue asymptotics, and Fekete points, SIAM J. Appl. Math., 70, 302-332 (2009) · Zbl 1191.35032 · doi:10.1137/080733280
[10] Freidlin, M., Functional Integration and Partial Differential Equations Annals of Mathematics Studies (1985), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0568.60057
[11] Grebenkov, D. S.; Velle, L. R., Partially reflected Brownian motion: a stochastic approach to transport phenomena, Focus on Probability Theory, 135-169 (2006), Hauppauge: Nova Science Publishers, Hauppauge
[12] Grebenkov, D. S., Residence times and other functionals of reflected Brownian motion, Phys. Rev. E, 76 (2007) · doi:10.1103/physreve.76.041139
[13] Grebenkov, D. S.; Lindenberg, K.; Metzler, R.; Oshanin, G., Imperfect diffusion-controlled reactions, Chemical Kinetics: Beyond the Textbook (2019), Singapore: World Scientific, Singapore
[14] Grebenkov, D. S., Spectral theory of imperfect diffusion-controlled reactions on heterogeneous catalytic surfaces, J. Chem. Phys., 151 (2019) · doi:10.1063/1.5115030
[15] Grebenkov, D. S., Paradigm shift in diffusion-mediated surface phenomena, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.078102
[16] Grebenkov, D. S., Joint distribution of multiple boundary local times and related first-passage time problems with multiple targets, J. Stat. Mech. (2020) · Zbl 1459.60159 · doi:10.1088/1742-5468/abb6e4
[17] Grebenkov, D. S., An encounter-based approach for restricted diffusion with a gradient drift (2021)
[18] Kac, M., On distributions of certain Wiener functionals, Trans. Am. Math. Soc., 65, 1-13 (1949) · Zbl 0032.03501 · doi:10.1090/s0002-9947-1949-0027960-x
[19] Kurella, V.; Tzou, J. C.; Coombs, D.; Ward, M. J., Asymptotic analysis of first passage time problems inspired by ecology, Bull. Math. Biol., 77, 83-125 (2015) · Zbl 1319.35275 · doi:10.1007/s11538-014-0053-5
[20] Lèvy, P., Sur certaines processus stochastiques homogenes, Compos. Math., 7, 283 (1939) · JFM 65.1346.02 · doi:10.1080/17442508508833361
[21] Lindsay, A. E.; Spoonmore, R. T.; Tzou, J. C., Hybrid asymptotic-numerical approach for estimating first passage time densities of the two-dimensional narrow capture problem, Phys. Rev. E, 94 (2016) · doi:10.1103/physreve.94.042418
[22] Majumdar, S. N., Brownian functionals in physics and computer science, Curr. Sci., 89, 2076 (2005) · doi:10.1142/9789812772718_0006
[23] McKean, H. P., Brownian local times, Adv. Math., 16, 91-111 (1975) · Zbl 0309.60054 · doi:10.1016/0001-8708(75)90102-4
[24] Milshtein, G. N., The solving of boundary value problems by numerical integration of stochastic equations, Math. Comput. Simul., 38, 77-85 (1995) · Zbl 0824.60059 · doi:10.1016/0378-4754(93)e0069-h
[25] Papanicolaou, V. G., The probabilistic solution of the third boundary value problem for second order elliptic equations, Probab. Theor. Rel. Fields, 87, 27-77 (1990) · Zbl 0688.60063 · doi:10.1007/bf01217746
[26] Redner, S., A Guide to First-Passage Processes (2021), Cambridge: Cambridge University Press, Cambridge
[27] Rice, S. A., Diffusion-Limited Reactions (1985), Amsterdam: Elsevier, Amsterdam
[28] Schumm, R. D.; Bressloff, P. C., Search processes with stochastic resetting and partially absorbing targets, J. Phys. A, 54 (2021) · Zbl 1519.60099 · doi:10.1088/1751-8121/ac219b
[29] Singer, A.; Schuss, Z.; Osipov, A.; Holcman, D., Partially reflected diffusion, SIAM J. Appl. Math., 68, 844-868 (2008) · Zbl 1141.60044 · doi:10.1137/060663258
[30] Smoluchowski, M. V., Z. Phys. Chem., 92, 129-168 (1917) · doi:10.1515/zpch-1918-9209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.