×

The streamlines of \(\infty\)-harmonic functions obey the inverse mean curvature flow. (English) Zbl 1506.35108

Summary: Given an \(\infty\)-harmonic function \(u_{\infty}\) on a domain \(\Omega \subseteq \mathbb{R}^2\), consider the function \(w=-\log |\nabla u_{\infty}|\). If \(u_{\infty}\in C^2 (\Omega)\) with \(\nabla u_{\infty} \neq 0\) and \(\nabla |\nabla u_{\infty}|\neq 0\), then it is easy to check that
the streamlines of \(u_{\infty}\) are the level sets of \(w\) and
\(w\) solves the level set formulation of the inverse mean curvature flow.
For less regular solutions, neither statement is true in general, but even so, \(w\) is still a weak solution of the inverse mean curvature flow under far weaker assumptions. This is proved through an approximation of \(u_{\infty}\) by \(p\)-harmonic functions, the use of conjugate \(p'\)-harmonic functions, and the known connection of the latter with the inverse mean curvature flow. A statement about the regularity of \(|\nabla u_{\infty}|\) arises as a by-product.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35D30 Weak solutions to PDEs
35D40 Viscosity solutions to PDEs

References:

[1] Aronsson, G., Extension of functions satisfying Lipschitz conditions, Ark. Mat, 6, 6, 551-561 (1967) · Zbl 0158.05001 · doi:10.1007/BF02591928
[2] Aronsson, G., On the partial differential equation, Ark. Mat, 7, 395-425 (1968) · Zbl 0162.42201
[3] Bhattacharya, T.; DiBenedetto, E.; Manfredi, J., and related extremal problems (1991)
[4] Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal, 123, 1, 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[5] Evans, L. C.; Savin, O., \(####\) regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differ. Equations., 32, 325-347 (2008) · Zbl 1151.35096
[6] Savin, O., C^1 regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal, 176, 3, 351-361 (2005) · Zbl 1112.35070 · doi:10.1007/s00205-005-0355-8
[7] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D. B., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc, 22, 1, 167-210 (2008) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[8] Lindgren, E.; Lindqvist, P., Infinity-harmonic potentials and their streamlines, Discrete Contin. Dyn. Syst, 39, 8, 4731-4746 (2019) · Zbl 1432.35067 · doi:10.3934/dcds.2019192
[9] Lindgren, E.; Lindqvist, P., The gradient flow of infinity-harmonic potentials, Adv. Math, 378, 107526 (2021) · Zbl 1466.35163 · doi:10.1016/j.aim.2020.107526
[10] Aronsson, G., On certain singular solutions of the partial differential equation, Manuscripta Math, 47, 133-151 (1984) · Zbl 0551.35018
[11] Crandall, M. G., Calculus of Variations and Nonlinear Partial Differential Equations, 1927, A visit with the ∞-Laplace equation, 75-122 (2008), Berlin: Springer, Berlin · Zbl 1357.49112
[12] Huisken, G.; Ilmanen, T., The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom, 59, 3, 353-437 (2001) · Zbl 1055.53052 · doi:10.4310/jdg/1090349447
[13] Koch, H.; Zhang, Y. R.-Y.; Zhou, Y., An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, J. Math. Pures Appl, 132, 9, 457-482 (2019) · Zbl 1435.35143 · doi:10.1016/j.matpur.2019.02.008
[14] Evans, L. C., Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Differ. Equations., 3, 9 (1993) · Zbl 0809.35032
[15] Aronsson, G.; Lindqvist, P., On p-harmonic functions in the plane and their stream functions, J. Differ. Equations., 74, 1, 157-178 (1988) · Zbl 0659.35037 · doi:10.1016/0022-0396(88)90022-8
[16] Lindqvist, P., On p-harmonic functions in the complex plane and curvature, Israel J. Math, 63, 3, 257-269 (1988) · Zbl 0667.31008 · doi:10.1007/BF02778033
[17] Kotschwar, B.; Ni, L., Local gradient estimates of p-harmonic functions, \(####\)-flow, and an entropy formula, Ann. Sci. Éc. Norm. Supér, 42, 4, 1-36 (2009) · Zbl 1182.53060
[18] Moser, R., The inverse mean curvature flow and p-harmonic functions, J. Eur. Math. Soc, 9, 77-83 (2007) · Zbl 1116.53040 · doi:10.4171/JEMS/73
[19] Moser, R., The inverse mean curvature flow as an obstacle problem, Indiana Univ. Math. J, 57, 5, 2235-2256 (2008) · Zbl 1161.53059 · doi:10.1512/iumj.2008.57.3385
[20] Moser, R., Geroch monotonicity and the construction of weak solutions of the inverse mean curvature flow, Asian J. Math, 19, 2, 357-376 (2015) · Zbl 1328.53087 · doi:10.4310/AJM.2015.v19.n2.a9
[21] Katzourakis, N.; Moser, R., Existence, uniqueness and structure of second order absolute minimisers, Arch Ration. Mech Anal, 231, 3, 1615-1634 (2019) · Zbl 1407.49002 · doi:10.1007/s00205-018-1305-6
[22] Katzourakis, N.; Parini, E., The eigenvalue problem for the \(####\)-Bilaplacian, Nonlinear Differ. Equations Appl, 24, 68 (2017) · Zbl 1516.35295
[23] Moser, R., Structure and classification results for the ∞-elastica problem, Amer. J. Math · Zbl 1523.49048
[24] Moser, R.; Schwetlick, H., Minimizers of a weighted maximum of the Gauss curvature, Ann. Glob. Anal. Geom, 41, 2, 199-207 (2012) · Zbl 1236.53035 · doi:10.1007/s10455-011-9278-9
[25] Sakellaris, Z. N., Minimization of scalar curvature in conformal geometry, Ann. Glob. Anal. Geom, 51, 1, 73-89 (2017) · Zbl 1356.49078 · doi:10.1007/s10455-016-9524-2
[26] Sheffield, S.; Smart, C. K., Vector-valued optimal Lipschitz extensions, Comm. Pure Appl. Math, 65, 1, 128-154 (2012) · Zbl 1233.35068 · doi:10.1002/cpa.20391
[27] Katzourakis, N., \(####\) variational problems for maps and the Aronsson PDE system, J. Differ. Equations., 253, 2123-2139 (2012) · Zbl 1248.35074
[28] Katzourakis, N., Explicit 2D ∞-harmonic maps whose interfaces have junctions and corners, C. R. Math. Acad. Sci. Paris., 351, 17-18, 677-680 (2013) · Zbl 1278.35057 · doi:10.1016/j.crma.2013.07.028
[29] Katzourakis, N., ∞-minimal submanifolds, Proc. Am. Math. Soc, 142, 8, 2797-2811 (2014) · Zbl 1301.35029 · doi:10.1090/S0002-9939-2014-12039-9
[30] Katzourakis, N., On the structure of ∞-harmonic maps, Comm. Partial Differ. Equations., 39, 11, 2091-2124 (2014) · Zbl 1304.49038 · doi:10.1080/03605302.2014.920351
[31] Katzourakis, N., Nonuniqueness in vector-valued calculus of variations in \(####\) and some linear elliptic systems, Commun. Pure Appl. Anal, 14, 313-327 (2015) · Zbl 1316.31017
[32] Katzourakis, N., A characterisation of ∞-harmonic and p-harmonic maps via affine variations in, Electron. J. Differ. Equations., 29 (2017) · Zbl 1357.35088
[33] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal, 12, 11, 1203-1219 (1988) · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3
[34] Lebesgue, H., Sur le problème de Dirichlet, Rend. Circ. Matem. Palermo, 24, 1, 371-402 (1907) · JFM 38.0392.01 · doi:10.1007/BF03015070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.