×

Fractional Fourier transform and Ulam stability of fractional differential equation with fractional Caputo-type derivative. (English) Zbl 1506.34020


MSC:

34A08 Fractional ordinary differential equations
34A30 Linear ordinary differential equations and systems
34D10 Perturbations of ordinary differential equations
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

References:

[1] Agarwal, P.; Jain, S., Further results on fractional calculus of Srivastava polynomials, Bulletin of Mathematical Analysis and Applications, 3, 2, 167-174 (2011) · Zbl 1314.26005
[2] Agarwal, P.; Jain, S.; Agarwal, S.; Nagpal, M., On a new class of integrals involving Bessel functions of the first kind, Communications in Numerical Analysis, 2014, 1-7 (2014) · doi:10.5899/2014/cna-00216
[3] Agarwal, P.; Baltaeva, U.; Alikulov, Y., Solvability of the boundary-value problem for a linear loaded integro-differential equation in an infinite three-dimensional domain, Chaos, Solitons and Fractals, 140, 110108 (2020) · Zbl 1495.45003 · doi:10.1016/j.chaos.2020.110108
[4] Lacroix, S. F., Traité du calcul différentiel et du calcul intégral Tome 3, Traité du calcul différentiel et du calcul intégral (1819), Paris: Courcier: Elsevier, Paris: Courcier
[5] Ozaktas, H. M.; Kutay, M. A., The fractional Fourier transform, 2001 European Control Conference (ECC)
[6] Ulam, S. M., Chapter IV, Problem in Modern Mathematics, Science Editors (1960), New York: Willey, New York · Zbl 0086.24101
[7] Hyers, D. H., On the stability of the linear functional equation, Proceedings of the National Academy of Sciences, 27, 4, 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[8] Rassias, T. M., On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72, 2, 297-300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[9] Jung, S. M., Hyers-Ulam stability of linear differential equations of first order, Applied Mathematics Letters, 17, 10, 1135-1140 (2004) · Zbl 1061.34039 · doi:10.1016/j.aml.2003.11.004
[10] Jung, S. M., Hyers-Ulam stability of linear differential equations of first order, III, Journal of Mathematical Analysis and Applications, 311, 1, 139-146 (2005) · Zbl 1087.34534 · doi:10.1016/j.jmaa.2005.02.025
[11] Jung, S. M., Hyers-Ulam stability of linear differential equations of first order, II, Applied Mathematics Letters, 19, 9, 854-858 (2006) · Zbl 1125.34328 · doi:10.1016/j.aml.2005.11.004
[12] Jung, S. M., Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, Journal of Mathematical Analysis and Applications, 320, 2, 549-561 (2006) · Zbl 1106.34032 · doi:10.1016/j.jmaa.2005.07.032
[13] Ponmana Selvan, A.; Sabarinathan, S.; Selvam, A., Approximate solution of the special type differential equation of higher order using Taylor’s series, Journal of Mathematics and Computer Science, 27, 2, 131-141 (2022) · doi:10.22436/jmcs.027.02.04
[14] Zhang, F.; Li, C., Stability analysis of fractional differential systems with order lying in (1, 2), Advances in Difference Equations, 2011 (2011) · Zbl 1219.34012 · doi:10.1155/2011/213485
[15] Li, C. P.; Zhang, F. R., A survey on the stability of fractional differential equations, The European Physical Journal Special Topics, 193, 1, 27-47 (2011) · doi:10.1140/epjst/e2011-01379-1
[16] Ibrahim, R. W., Stability of fractional differential equations, International Journal of Mathematics and Computer Science Engineering, 7, 3, 212-217 (2013)
[17] Kalvandi, V.; Eghbali, N.; Rassia, J. M., Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second order, Journal of Mathematical Extension, 13, 1-15 (2019)
[18] Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D., Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 132, 109534 (2020) · Zbl 1434.34014 · doi:10.1016/j.chaos.2019.109534
[19] Vu, H.; An, T. V.; Hoa, N. V., Ulam-Hyers stability of uncertain functional differential equation in fuzzy setting with Caputo-Hadamard fractional derivative concept, Journal of Intelligent Fuzzy Systems, 38, 2, 2245-2259 (2020) · doi:10.3233/JIFS-191025
[20] Wang, J.; Lv, L.; Zhou, Y., Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electronic Journal of Qualitative Theory of Differential Equations, 63, 63, 1-10 (2011) · Zbl 1340.34034 · doi:10.14232/ejqtde.2011.1.63
[21] Wang, J. R.; Zhou, Y., Mittag-Leffler-Ulam stabilities of fractional evolution equations, Applied Mathematics Letters, 25, 4, 723-728 (2012) · Zbl 1246.34012 · doi:10.1016/j.aml.2011.10.009
[22] Wang, J. R.; Zhou, Y.; Feckan, M., Nonlinear impulsive problems for fractional differential equations and Ulam stability, Computers & Mathematcs with Applications, 64, 10, 3389-3405 (2012) · Zbl 1268.34033 · doi:10.1016/j.camwa.2012.02.021
[23] Unyong, B.; Mohanapriya, A.; Ganesh, A.; Rajchakit, G.; Govindan, V.; Vadivel, R.; Gunasekaran, N.; Lim, C. P., Fractional Fourier transform and stability of fractional differential equation on Lizorkin space, Advances in Difference Equations, 2020, 1, article 578 (2020) · Zbl 1487.34045 · doi:10.1186/s13662-020-03046-5
[24] Hammachukiattikul, P.; Mohanapriya, A.; Ganesh, A.; Rajchakit, G.; Govindan, V.; Gunasekaran, N.; Lim, C. P., A study on fractional differential equations using the fractional Fourier transform, Advances in Difference Equations, 2020, 1, article 691 (2020) · Zbl 1485.35387 · doi:10.1186/s13662-020-03148-0
[25] Ganesh, A.; Govindan, V.; Lee, J. R.; Mohanapriya, A.; Park, C., Mittag-Leffler-Hyers-Ulam stability of delay fractional differential equation via fractional Fourier transform, Results in Mathematics, 76, 4, 1-7 (2021) · Zbl 1476.34022 · doi:10.1007/s00025-021-01491-6
[26] Ganesh, A.; Deepa, S.; Baleanu, D.; Santra, S. S.; Moaaz, O.; Govindan, V.; Ali, R.; Department of Mathematics, Government Arts and Science College, Hosur, 635 110, Tamilnadu, India; Department of Mathematics, Adhiyamaan college of engineering, Hosur, 635 109, Tamilnadu, India; Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Çankaya University Ankara, 06790 Etimesgut, Turkey; Instiute of Space Sciences, Magurele-Bucharest, 077125 Magurele, Romania; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, China; Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal-741 235, India; Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Department of Mathematics, Phuket Rajabhat University, 83000, Thailand; Department of Mathematics, College of Science and Arts, Muhayil, King Khalid University, Abha 9004, Saudi Arabia, Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform, AIMS Mathematics, 7, 2, 1791-1810 (2022) · doi:10.3934/math.2022103
[27] Zayed, A. I., Fractional Fourier transform of generalized functions, Integral Transforms and Special Functions, 7, 3-4, 299-312 (1998) · Zbl 0941.46021 · doi:10.1080/10652469808819206
[28] Kilbas, A. A.; Trujillo, J. J., Differential equations of fractional order: methods results and problem—I, Applicable Analysis, 78, 1-2, 153-192 (2001) · Zbl 1031.34002 · doi:10.1080/00036810108840931
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.