×

Affine oriented Frobenius Brauer categories. (English) Zbl 1506.18020

Summary: To any Frobenius superalgebra \(A\) we associate an oriented Frobenius Brauer category and an affine oriented Frobenius Brauer category. We define natural actions of these categories on categories of supermodules for general linear Lie superalgebras \(\mathfrak{gl}_{m|n}(A)\) with entries in \(A\). These actions generalize those on module categories for general linear Lie superalgebras and queer Lie superalgebras, which correspond to the cases where \(A\) is the ground field and the two-dimensional Clifford superalgebra, respectively.

MSC:

18M05 Monoidal categories, symmetric monoidal categories
18M30 String diagrams and graphical calculi
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] Brundan, J.; Comes, J.; Kujawa, J. R., A basis theorem for the degenerate affine oriented Brauer-Clifford supercategory, Can. J. Math, 71, 5, 1061-1101 (2019) · Zbl 1470.17005 · doi:10.4153/cjm-2018-030-8
[2] Brundan, J.; Comes, J.; Nash, D.; Reynolds, A., A basis theorem for the affine oriented Brauer category and its cyclotomic quotients, Quantum Topol., 8, 1, 75-112 (2017) · Zbl 1419.18011 · doi:10.4171/QT/87
[3] Brundan, J.; Ellis, A. P., Monoidal supercategories, Commun. Math. Phys., 351, 3, 1045-1089 (2017) · Zbl 1396.17012 · doi:10.1007/s00220-017-2850-9
[4] Berele, A.; Regev, A., Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math, 64, 2, 118-175 (1987) · Zbl 0617.17002 · doi:10.1016/0001-8708(87)90007-7
[5] Brundan, J., On the definition of Heisenberg category, Algebraic Comb., 1, 4, 523-544 (2018) · Zbl 1457.17009 · doi:10.5802/alco.26
[6] Brundan, J.; Stroppel, C., Gradings on walled Brauer algebras and Khovanov’s arc algebra, Adv. Math, 231, 2, 709-773 (2012) · Zbl 1326.17006 · doi:10.1016/j.aim.2012.05.016
[7] Brundan, J.; Savage, A.; Webster, B., Foundations of Frobenius Heisenberg categories, J. Algebra, 578, 115-185 (2021) · Zbl 1471.18019 · doi:10.1016/j.jalgebra.2021.02.025
[8] Brundan, J.; Savage, A.; Webster, B., Quantum Frobenius Heisenberg categorification, J. Pure Appl. Algebra, 226, 1, 50 (2022) · Zbl 1490.18020 · doi:10.1016/j.jpaa.2021.106792
[9] Comes, J.; Wilson, B., Deligne’s category \(####\) and representations of general linear supergroups, Represent. Theory, 16, 568-609 (2012) · Zbl 1302.17010 · doi:10.1090/S1088-4165-2012-00425-3
[10] Deligne, P., Algebraic Groups and Homogeneous Spaces, 19, La catégorie des représentations du groupe symétrique St, lorsque t n’est pas un entier naturel, 209-273 (2007), Tata Institute of Fundamental Research in Mathematics. Mumbai: Tata Institute of Fundamental Research · Zbl 1165.20300
[11] Ehrig, M.; Stroppel, C., Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra, Math. Z., 284, 1-2, 595-613 (2016) · Zbl 1393.17017 · doi:10.1007/s00209-016-1669-y
[12] Gao, M.; Rui, H.; Song, L.; Su, Y., Affine walled Brauer-Clifford superalgebras, J. Algebra, 525, 191-233 (2019) · Zbl 1462.17013 · doi:10.1016/j.jalgebra.2019.01.014
[13] Jung, J. H.; Kang, S.-J., Mixed Schur-Weyl-Sergeev duality for queer Lie superalgebras, J. Algebra, 399, 516-545 (2014) · Zbl 1370.17009 · doi:10.1016/j.jalgebra.2013.08.029
[14] Khovanov, M., Heisenberg algebra and a graphical calculus, Fund. Math., 225, 1, 169-210 (2014) · Zbl 1304.18019 · doi:10.4064/fm225-1-8
[15] Koike, K., On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math, 74, 1, 57-86 (1989) · Zbl 0681.20030 · doi:10.1016/0001-8708(89)90004-2
[16] Lee Shader, C.; Moon, D., Mixed tensor representations and rational representations for the general linear Lie superalgebras, Commun. Algebra, 30, 2, 839-857 (2002) · Zbl 1035.17013 · doi:10.1081/AGB-120013185
[17] Mackaay, M.; Savage, A., Degenerate cyclotomic Hecke algebras and higher level Heisenberg categorification, J. Algebra, 505, 150-193 (2018) · Zbl 1437.20004 · doi:10.1016/j.jalgebra.2018.03.004
[18] Rui, H.; Su, Y., Affine walled Brauer algebras and super Schur-Weyl duality, Adv. Math, 285, 28-71 (2015) · Zbl 1356.17012 · doi:10.1016/j.aim.2015.07.018
[19] Rosso, D.; Savage, A., A general approach to Heisenberg categorification via wreath product algebras, Math. Z., 286, 1-2, 603-655 (2017) · Zbl 1366.18006 · doi:10.1007/s00209-016-1776-9
[20] Sartori, A., The degenerate affine walled Brauer algebra, J. Algebra, 417, 198-233 (2014) · Zbl 1359.17015 · doi:10.1016/j.jalgebra.2014.06.030
[21] Savage, A., Frobenius Heisenberg categorification, Algebraic Comb, 2, 5, 937-967 (2019) · Zbl 1459.18008 · doi:10.5802/alco.73
[22] Savage, A., Affine wreath product algebras, Int. Math. Res. Not. IMRN, 10, 2977-3041 (2020) · Zbl 1528.20006 · doi:10.1093/imrn/rny092
[23] Savage, A., Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification, 337, String diagrams and categorification (2021), Cham: Birkhäuser/Springer, Cham · Zbl 1481.17001 · doi:10.1007/978-3-030-63849-8
[24] Sergeev, A. N., Funktsional. Anal. i Prilozhen, 18, 1, 80-81 (1984) · Zbl 0542.17002
[25] Sergeev, A. N., Tensor algebra of the identity representation as a module over the Lie superalgebras \(####\) and Q(n), Mat. Sb. (N.S.), 123, 165, 422-430 (1984)
[26] Turaev, V. G., Operator invariants of tangles, and R-matrices, Izv. Akad. Nauk SSSR Ser. Mat, 53, 5, 1073-1107 (1989) · Zbl 0707.57003 · doi:10.1070/IM1990v035n02ABEH000711
[27] Turaev, V.; Virelizier, A., Monoidal Categories and Topological Field Theory, 322 (2017), Cham: Birkhäuser/Springer, Cham · Zbl 1423.18001 · doi:10.1007/978-3-319-49834-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.