×

Sufficient conditions on finite-time input-to-state stability of nonlinear impulsive systems: a relaxed Lyapunov function method. (English) Zbl 1505.93227

Summary: This article presents sufficient conditions on finite-time input-to-state stability (FTISS) of nonlinear impulsive systems, which gathers the analysis of Input-to-State stability (ISS) and finite-time convergence rate. By utilising the finite-time stable function pair (FTSFP) and generalised \(\mathcal{KL}\) \((\mathcal{GKL})\) function, we established an unified FTISS criterion for nonlinear impulsive systems, in which the impulses maybe beneficial to stabilisation or detrimental to stabilisation. Moreover, a relaxed Lyapunov function (LF) method is used to investigate FTISS. Compared with the traditional LF method, the main advantage is that the constructed LF is permitted to own indefinite-derivative. As a special case of FTISS, a corollary on finite-time stability (FTS) is established, which is applicable to investigate the realisation of FTS for nonlinear system via impulsive control strategy. Finally, the proposed results are supported by two practical numerical examples.

MSC:

93D40 Finite-time stability
93D25 Input-output approaches in control theory
93C27 Impulsive control/observation systems
93C10 Nonlinear systems in control theory
93D30 Lyapunov and storage functions
Full Text: DOI

References:

[1] Ai, Z.; Zong, G., Finite-time stochastic input-to-state stability of impulsive switched stochastic nonlinear systems, Applied Mathematics and Computation, 245, 15, 462-473 (2014) · Zbl 1335.93136 · doi:10.1016/j.amc.2014.07.092
[2] Amato, F.; De Tommasi, G.; Pironti, A., Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica, 49, 8, 2546-2550 (2013) · Zbl 1364.93737 · doi:10.1016/j.automatica.2013.04.004
[3] Ambrosino, R.; Calabrese, F.; Cosentino, C.; Tommasi, G., Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Transactions on Automatic Control, 54, 4, 861-865 (2009) · Zbl 1367.93425 · doi:10.1109/TAC.2008.2010965
[4] Ballinger, G.; Liu, X., Existence and uniqueness results for impulsive delay differential equation, Dynamics of Continuous Discrete and Impulsive Systems, 5, 1, 579-591 (1999) · Zbl 1031.34081 · doi:10.1080/00036810008840804
[5] Bhat, S.; Bernstein, D., Continuous finite-time stabilization of the translational and rotational double integrator, IEEE Transactions on Automatic Control, 43, 5, 678-682 (1998) · Zbl 0925.93821 · doi:10.1109/9.668834
[6] Bhat, S.; Bernstein, D., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[7] Cai, X.; Bekiaris-Liberis, N.; Krstic, M., Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems, Automatica, 103, 11, 549-557 (2019) · Zbl 1415.93231 · doi:10.1016/j.automatica.2019.02.038
[8] Cai, Z.; Huang, J.; Huang, L., Generalized Lyapunov-Razumikhin method for retarded differential inclusion: Applications to discontinuous neural networks, Discrete & Continuous Dynamical Systems-B, 22, 9, 3591-3614 (2017) · Zbl 1371.34107 · doi:10.3934/dcdsb.2017181
[9] Cai, Z.; Huang, L.; Wang, Z., Novel fixed-time stability criteria for discontinuous nonautonomous systems: Lyapunov method with indefinite derivative, IEEE Transactions on Cybernetics, 2020 (2020) · doi:10.1109/TCYB.2020.3025754
[10] Cai, C.; Teel, A., Robust input-to-state stability for hybrid systems, SIAM Journal on Control and Optimization, 51, 1, 1651-1678 (2013) · Zbl 1267.93158 · doi:10.1137/110824747
[11] Cao, J.; Stamov, G.; Stamova, I.; Simeonov, S., Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Transactions on Cybernetics, 51, 1, 151-161 (2021) · doi:10.1109/TCYB.6221036
[12] Chen, G.; Yang, Y., Relaxed conditions for the input-to-state stability of switched nonlinear time-varying systems, IEEE Transactions on Automatic Control, 62, 9, 4706-4711 (2017) · Zbl 1390.93703 · doi:10.1109/TAC.2016.2625979
[13] Chen, W.; Zheng, W., Input-to-state stability and integrable input-to-state stability of nonlinear impulsive systems with delays, Automatica, 45, 6, 1481-1488 (2009) · Zbl 1166.93370 · doi:10.1016/j.automatica.2009.02.005
[14] Clarke, F., Optimization and nonsmooth analysis (1983), Wiley-Press · Zbl 0582.49001
[15] Dashkovskiy, S.; Feketa, P., Input-to-state stability of impulsive systems and their networks, Nonlinear Analysis Hybrid Systems, 26, 1, 190-220 (2017) · Zbl 1373.93294 · doi:10.1016/j.nahs.2017.06.004
[16] Dashkovskiy, S.; Mironchenko, A., Input-to-state stability of nonlinear impulsive systems, SIAM Journal on Control and Optimization, 51, 1, 1962-1987 (2013) · Zbl 1271.34011 · doi:10.1137/120881993
[17] Garg, K., & Panagou, D. (2019). Finite-time stability of switched and hybrid systems. Arxiv:1901.08513v1. 2019.
[18] Haddad, W.; Afflitto, A., Finite-time stabilization and optimal feedback control, IEEE Transactions on Automatic Control, 61, 4, 1069-1074 (2016) · Zbl 1359.93366 · doi:10.1109/TAC.2015.2454891
[19] Hardy, G.; Littlewood, J.; Polya, G., Inequalities (1988), Cambridge University Press · Zbl 0634.26008
[20] Hespanha, J.; Liberzon, D.; Teel, A., Lyapuov conditions for input-to-state stability of impulsive systems, Automatica, 44, 11, 857-869 (2008) · Zbl 1152.93050 · doi:10.1016/j.automatica.2008.03.021
[21] Hong, Y.; Jiang, Z.; Feng, G., Finite-time input-to-state stability and applications to finite-time control design, SIAM Journal on Control and Optimization, 48, 7, 4395-4418 (2010) · Zbl 1210.93066 · doi:10.1137/070712043
[22] Hur, P.; Duiser, B.; Hsiao-Wecksler, E., Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18, 4, 461-467 (2010) · doi:10.1109/TNSRE.7333
[23] Kundua, A.; Chatterjee, D.; Liberzon, D., Generalized switching signals for input-to-state stability of switched systems, Automatica, 64, 4-5, 270-277 (2016) · Zbl 1327.93341 · doi:10.1016/j.automatica.2015.11.027
[24] Levant, A.; Livne, M., Weighted homogeneity and robustness of sliding mode control, Automatica, 72, 2, 186-193 (2016) · Zbl 1344.93029 · doi:10.1016/j.automatica.2016.06.014
[25] Levant, A.; Pavlov, Y., Generalized homogeneous quasi-continuous controllers, International Journal of Robust and Nonlinear Control, 18, 4-5, 385-398 (2008) · Zbl 1284.93060 · doi:10.1002/(ISSN)1099-1239
[26] Li, X.; Cao, J., An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62, 7, 3618-3625 (2017) · Zbl 1370.34131 · doi:10.1109/TAC.2017.2669580
[27] Li, X.; Ho, D.; Cao, J., Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99, 361-368 (2019) · Zbl 1406.93260 · doi:10.1016/j.automatica.2018.10.024
[28] Li, H.; Li, C.; Ouyang, D.; Nguang, S., Impulsive synchronization of unbounded delayed inertial neural networks with actuator saturation and sampled-data control and its application to image encryption, IEEE Transactions on Neural Networks and Learning Systems, 32, 4, 1460-1473 (2021) · doi:10.1109/TNNLS.5962385
[29] Li, X.; Song, S., Stabilization of delay systems: delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62, 1, 406-411 (2017) · Zbl 1359.34089 · doi:10.1109/TAC.2016.2530041
[30] Li, H.; Wang, J., Input-to-state stability of continuous-time system via finite-time Lyapunov functions, Discrete & Continuous Dynamical Systems-B, 25, 3, 841-857 (2020) · Zbl 1446.93069 · doi:10.3934/dcdsb.2019192
[31] Liu, X.; Zhang, K., Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses, Automatica, 72, 3, 147-152 (2016) · Zbl 1344.93071 · doi:10.1016/j.automatica.2016.06.001
[32] Long, L., Integrable ISS for switched nonlinear time-varying systems using indefinite multiple Lyapunov functions, IEEE Transactions on Automatic Control, 64, 1, 404-411 (2019) · Zbl 1423.93345 · doi:10.1109/TAC.2018.2833159
[33] Lopez-Ramirez, F.; Efimov, D.; Polyakov, A.; Perruquetti, W., Finite-time and fixed-time input-to-sate stability: Explicti and implicit approaches, Systems & Control Letters, 144, 5 (2020) · Zbl 1470.93138 · doi:10.1016/j.sysconle.2020.104775
[34] Lu, J.; Ho, D.; Cao, J., A unified synchronization criterion for impulsive dynamical networks, Automatica, 46, 7, 1215-1221 (2010) · Zbl 1194.93090 · doi:10.1016/j.automatica.2010.04.005
[35] Moulay, E.; Dambrine, M.; Yeganefar, N.; Perruquetti, W., Finite time stability and stabilization of time-delayed systems, Systems & Control Letters, 57, 7, 561-566 (2008) · Zbl 1140.93447 · doi:10.1016/j.sysconle.2007.12.002
[36] Moulay, E.; Perruquetti, W., Finite time stability and stabilization of a class of conitnuous systems, Journal of Mathematical Analysis and Applications, 323, 2, 1430-1443 (2006) · Zbl 1131.93043 · doi:10.1016/j.jmaa.2005.11.046
[37] Peng, S.; Deng, F.; Zhang, Y., A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems & Control Letters, 216, 1, 20-26 (2018) · Zbl 1417.93280 · doi:10.1016/j.sysconle.2018.04.002
[38] Ployakov, A.; Efimov, D.; Perruquetti, W., Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica, 51, 4, 332-340 (2015) · Zbl 1309.93135 · doi:10.1016/j.automatica.2014.10.082
[39] Sontag, E., Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 34, 4, 435-443 (1989) · Zbl 0682.93045 · doi:10.1109/9.28018
[40] Sontag, E., Comments on integral variants of ISS, Systems & Control Letters, 34, 1-2, 93-100 (2018) · Zbl 0902.93062 · doi:10.1016/S0167-6911(98)00003-6
[41] Veer, S.; Rakesh; Poulakakis, I., Input-to-State stability of periodic orbits of systems with impulse effects via Poincaré analysis, IEEE Transactions on Automatic Control, 64, 11, 4583-4598 (2019) · Zbl 1482.93531 · doi:10.1109/TAC.9
[42] Wang, Z.; Cao, J.; Cai, Z.; Huang, L., Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks, Discrete & Continuous Dynamical Systems-B, 26, 5, 2677-2696 (2020) · Zbl 1467.93280 · doi:10.3934/dcdsb.2020200
[43] Wang, Z.; Cao, J.; Cai, Z., A novel Lyapunov theorem on finite/fixed time stability of discontinuous impulsive systems, Chaos (Woodbury, N.Y.), 2020, 30 (2020) · Zbl 1476.34123 · doi:10.1063/1.5121246
[44] Wang, Y.; Sun, X.; Shi, P.; Zhao, J., Input-to-state stability of switched nonlinear systems with time delays under asynchronous switching, IEEE Transactions on Cybernetics, 43, 6, 2261-2265 (2013) · doi:10.1109/TCYB.2013.2240679
[45] Wu, X.; Tang, Y.; Cao, J., Input-to-state stability of time-varying switched systems with time delays, IEEE Transactions on Automatic Control, 64, 6, 2537-2544 (2019) · Zbl 1482.93532 · doi:10.1109/TAC.9
[46] Wu, X.; Tang, Y.; Zhang, W., Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica, 66, 7, 195-2014 (2016) · Zbl 1335.93115 · doi:10.1016/j.automatica.2016.01.002
[47] Yang, T., Impulsive control theory (2000), Springer-Verlag
[48] Zhou, B., On asymptotic stability of linear time-varying systems, Automatica, 68, 9, 266-276 (2016) · Zbl 1334.93152 · doi:10.1016/j.automatica.2015.12.030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.