×

Long-range seed dispersal enables almost stationary patterns in a model for dryland vegetation. (English) Zbl 1505.92254

Summary: Spatiotemporal patterns of vegetation are a ubiquitous feature of semi-arid ecosystems. On sloped terrain, vegetation patterns occur as stripes perpendicular to the contours. Field studies report contrasting long-term dynamics between different observation sites; some observe slow uphill migration of vegetation bands while some report stationary patterns. In this paper, we show that long-range seed dispersal provides a mechanism that enables the occurrence of both migrating and stationary patterns. We utilise a nonlocal PDE model in which seed dispersal is accounted for by a convolution term. The model represents vegetation patterns as periodic travelling waves and numerical continuation shows that both migrating and almost stationary patterns are stable if seed dispersal distances are sufficiently large. We use a perturbation theory approach to obtain analytical confirmation of the existence of almost stationary patterned solutions and provide a biological interpretation of the phenomenon.

MSC:

92D40 Ecology
35C07 Traveling wave solutions
92C15 Developmental biology, pattern formation

Software:

wavetrain

References:

[1] Avitabile, D.; Schmidt, H., Snakes and ladders in an inhomogeneous neural field model, Phys D Nonlinear Phenom, 294, 24-36 (2015) · Zbl 1365.92007 · doi:10.1016/j.physd.2014.11.007
[2] Bennett, JJR; Sherratt, JA, Long-distance seed dispersal affects the resilience of banded vegetation patterns in semi-deserts, J Theor Biol, 481, 151-161 (2018) · Zbl 1422.92183 · doi:10.1016/j.jtbi.2018.10.002
[3] Berg, S.; Dunkerley, D., Patterned Mulga near Alice springs, Central Australia, and the potential threat of firewood collection on this vegetation community, J Arid Environ, 59, 2, 313-350 (2004) · doi:10.1016/j.jaridenv.2003.12.007
[4] Bonachela, JA; Pringle, RM; Sheffer, E.; Coverdale, TC; Guyton, JA; Caylor, KK; Levin, SA; Tarnita, CE, Termite mounds can increase the robustness of dryland ecosystems to climatic change, Science, 347, 6222, 651-655 (2015) · doi:10.1126/science.1261487
[5] Borgogno, F.; D’Odorico, P.; Laio, F.; Ridolfi, L., Mathematical models of vegetation pattern formation in ecohydrology, Rev Geophys, 47, RG1005 (2009) · doi:10.1029/2007RG000256
[6] Bullock, JM; Gonzáalez, LM; Tamme, R.; Götzenberger, L.; White, SM; Pärtel, M.; Hooftman, DAP, A synthesis of empirical plant dispersal kernels, J Ecol, 105, 1, 6-19 (2017) · doi:10.1111/1365-2745.12666
[7] Carteni, F.; Marasco, A.; Bonanomi, G.; Mazzoleni, S.; Rietkerk, M.; Giannino, F., Negative plant soil feedback explaining ring formation in clonal plants, J Theor Biol, 313, 153-161 (2012) · Zbl 1337.92132 · doi:10.1016/j.jtbi.2012.08.008
[8] Caylor KK, Okin GS, Turnbull L, Wainwright J, Wiegand T, Franz TE, Parsons AJ (2014) Integrating short- and long-range processes into models: the emergence of pattern. In: Mueller EN, Wainwright J, Parsons AJ, Turnbull L (eds) Patterns of land degradation in drylands: understanding self-organised ecogeomorphic systems. Springer, Dordrecht, pp 141-167. doi:10.1007/978-94-007-5727-1_6
[9] Deblauwe, V.; Couteron, P.; Bogaert, J.; Barbier, N., Determinants and dynamics of banded vegetation pattern migration in arid climates, Ecol Monogr, 82, 1, 3-21 (2012) · doi:10.1890/11-0362.1
[10] Dembélé, F.; Picard, N.; Karembé, M.; Birnbaum, P., Tree vegetation patterns along a gradient of human disturbance in the Sahelian area of Mali, J Arid Environ, 64, 2, 284-297 (2006) · doi:10.1016/j.jaridenv.2005.05.006
[11] Dunkerley, D.; Brown, K., Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance, J Arid Environ, 51, 2, 163-181 (2002) · doi:10.1006/jare.2001.0940
[12] Eigentler, L.; Sherratt, JA, Analysis of a model for banded vegetation patterns in semiarid environments with nonlocal dispersal, J Math Biol, 77, 3, 739-763 (2018) · Zbl 1453.35025 · doi:10.1007/s00285-018-1233-y
[13] Eigentler, L.; Sherratt, JA, Effects of precipitation intermittency on vegetation patterns in semi-arid landscapes, Physica D, 405, 132396 (2020) · Zbl 1485.92174 · doi:10.1016/j.physd.2020.132396
[14] Eigentler, L.; Sherratt, JA, An integrodifference model for vegetation patterns in semiarid environments with seasonality, J Math Biol, 81, 875-904 (2020) · Zbl 1454.37088 · doi:10.1007/s00285-020-01530-w
[15] Escaff, D.; Fernandez-Oto, C.; Clerc, MG; Tlidi, M., Localized vegetation patterns, fairy circles, and localized patches in arid landscapes, Phys Rev E, 91, 2 (2015) · doi:10.1103/physreve.91.022924
[16] Faye, G., Existence and stability of traveling pulses in a neural field equation with synaptic depression, SIAM J Appl Dyn Syst, 12, 4, 2032-2067 (2013) · Zbl 1282.34061 · doi:10.1137/130913092
[17] Gandhi P, Iams S, Bonetti S, Silber M (2019) Vegetation pattern formation in drylands. In: D’Odorico A, Porporato A, Runyan CW (eds) Dry-land ecohydrology. Springer, New York, pp 469-509. doi:10.1007/978-3-030-23269-6_18 · Zbl 1484.92143
[18] Gilad, E.; von Hardenberg, J.; Provenzale, A.; Shachak, M.; Meron, E., Ecosystem engineers: from pattern formation to habitat creation, Phys Rev Lett, 93 (2004) · doi:10.1103/PhysRevLett.93.098105
[19] Gilad, E.; von Hardenberg, J.; Provenzale, A.; Shachak, M.; Meron, E., A mathematical model of plants as ecosystem engineers, J Theor Biol, 244, 4, 680-691 (2007) · Zbl 1450.92079 · doi:10.1016/j.jtbi.2006.08.006
[20] Guttal, V.; Jayaprakash, C., Self-organization and productivity in semi-arid ecosystems: implications of seasonality in rainfall, J Theor Biol, 248, 3, 490-500 (2007) · Zbl 1451.92324 · doi:10.1016/j.jtbi.2007.05.020
[21] Hejcmanová, P.; Hejcman, M.; Camara, AA; Antonínová, M., Exclusion of livestock grazing and wood collection in dryland savannah: an effect on long-term vegetation succession, Afr J Ecol, 48, 2, 408-417 (2010) · doi:10.1111/j.1365-2028.2009.01127.x
[22] Hooper, DU; Johnson, L., Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation, Biogeochemistry, 46, 1-3, 247-293 (1999) · doi:10.1007/bf01007582
[23] Istanbulluoglu, E.; Bras, RL, On the dynamics of soil moisture, vegetation, and erosion: implications of climate variability and change, Water Resour Res, 42, 6 (2006) · doi:10.1029/2005wr004113
[24] Iuorio, A.; Veerman, F., The influence of autotoxicity on the dynamics of vegetation spots, Phys D Nonlinear Phenom, 427, 133015 (2021) · Zbl 1484.35040 · doi:10.1016/j.physd.2021.133015
[25] Kéfi, S.; Guttal, V.; Brock, WA; Carpenter, SR; Ellison, AM; Livina, VN; Seekell, DA; Scheffer, M.; van Nes, EH; Dakos, V., Early warning signals of ecological transitions: methods for spatial patterns, PLoS ONE, 9, 3, e92097 (2014) · doi:10.1371/journal.pone.0092097
[26] Klausmeier, CA, Regular and irregular patterns in semiarid vegetation, Science, 284, 5421, 1826-1828 (1999) · doi:10.1126/science.284.5421.1826
[27] Kletter, A.; von Hardenberg, J.; Meron, E.; Provenzale, A., Patterned vegetation and rainfall intermittency, J Theor Biol, 256, 4, 574-583 (2009) · Zbl 1400.92579 · doi:10.1016/j.jtbi.2008.10.020
[28] Kot, M.; Lewis, MA; van den Driessche, P., Dispersal data and the spread of invading organisms, Ecology, 77, 7, 2027-2042 (1996) · doi:10.2307/2265698
[29] Lefever, R.; Lejeune, O., On the origin of tiger bush, Bull Math Biol, 59, 2, 263-294 (1997) · Zbl 0903.92031 · doi:10.1007/bf02462004
[30] Liu, BR; Kot, M., Accelerating invasions and the asymptotics of fat-tailed dispersal, J Theor Biol, 471, 22-41 (2019) · Zbl 1412.92262 · doi:10.1016/j.jtbi.2019.03.016
[31] Mabbutt, J.; Fanning, P., Vegetation banding in arid Western Australia, J Arid Environ, 12, 1, 41-59 (1987) · doi:10.1016/s0140-1963(18)31198-4
[32] Marasco, A.; Iuorio, A.; Carteni, F.; Bonanomi, G.; Tartakovsky, DM; Mazzoleni, S.; Giannino, F., Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback, Bull Math Biol, 76, 11, 2866-2883 (2014) · Zbl 1329.92027 · doi:10.1007/s11538-014-0036-6
[33] Martinez-Garcia, R.; Calabrese, JM; Hernandez-Garcia, E.; Lopez, C., Vegetation pattern formation in semiarid systems without facilitative mechanisms, Geophys Res Lett, 40, 23, 6143-6147 (2013) · doi:10.1002/2013gl058797
[34] Martinez-Garcia, R.; Tarnita, CE; Bonachela, JA, Spatial patterns in ecological systems: from microbial colonies to landscapes, Emerg Top Life Sci (2022) · doi:10.1042/etls20210282
[35] Merchant, SM; Nagata, W., Selection and stability of wave trains behind predator invasions in a model with non-local prey competition, IMA J Appl Math, 80, 4, 1155-1177 (2015) · Zbl 1330.35475 · doi:10.1093/imamat/hxu048
[36] Meron, E., Pattern-formation approach to modelling spatially extended ecosystems, Ecol Model, 234, 70-82 (2012) · doi:10.1016/j.ecolmodel.2011.05.035
[37] Meron, E., Nonlinear physics of ecosystems (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1316.92002 · doi:10.1201/b18360
[38] Montaña C, Seghieri J, Cornet A (2001) Vegetation dynamics: recruitment and regeneration in two-phase mosaics. In: Tongway DJ, Valentin C, Seghieri J (eds) Banded vegetation patterning in arid and semiarid environments: ecological processes and consequences for management. Springer, New York, pp 132-145. doi:10.1007/978-1-4613-0207-0_7
[39] Murray, JD, Mathematical biology II, 844 (2011), New York: Springer, New York
[40] Nathan, R.; Klein, E.; Robledo-Arnuncio, JJ; Revilla, E., Dispersal kernels: review. Dispersal ecology and evolution (2012), Oxford: Oxford University Press, Oxford · doi:10.1093/acprof:oso/9780199608898.003.0015
[41] Neubert, M.; Kot, M.; Lewis, M., Dispersal and pattern formation in a discrete-time predator-prey model, Theor Popul Biol, 48, 1, 7-43 (1995) · Zbl 0863.92016 · doi:10.1006/tpbi.1995.1020
[42] Perumpanani, AJ; Sherratt, JA; Maini, PK, Phase differences in reaction-diffusion-advection systems and applications to morphogenesis, IMA J Appl Math, 55, 1, 19-33 (1995) · Zbl 0843.35041 · doi:10.1093/imamat/55.1.19
[43] Pueyo, Y.; Kéfi, S.; Alados, CL; Rietkerk, M., Dispersal strategies and spatial organization of vegetation in arid ecosystems, Oikos, 117, 10, 1522-1532 (2008) · doi:10.1111/j.0030-299.2008.16735.x
[44] Rademacher, JD; Sandstede, B.; Scheel, A., Computing absolute and essential spectra using continuation, Physica D, 229, 2, 166-183 (2007) · Zbl 1119.65114 · doi:10.1016/j.physd.2007.03.016
[45] Rietkerk, M.; van de Koppel, J., Regular pattern formation in real ecosystems, Trends Ecol Evol, 23, 3, 169-175 (2008) · doi:10.1016/j.tree.2007.10.013
[46] Rietkerk M, Boerlijst M, van Langevelde F, HilleRisLambers R, Johan van de Koppel L, Kumar HT, Prins A de Roos (2002) Self-organization of vegetation in arid ecosystems. Am Nat 160(4):524-530. doi:10.1086/342078
[47] Rietkerk, M.; Dekker, SC; Wassen, MJ; Verkroost, AWM; Bierkens, MFP, A putative mechanism for bog patterning, Am Nat, 163, 5, 699-708 (2004) · doi:10.1086/383065
[48] Rietkerk, M.; Bastiaansen, R.; Banerjee, S.; van de Koppel, J.; Baudena, M.; Doelman, A., Evasion of tipping in complex systems through spatial pattern formation, Science, 374, 6564 (2021) · doi:10.1126/science.abj0359
[49] Saco, PM; Willgoose, GR; Hancock, GR, Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions, Hydrol Earth Syst Sci, 11, 6, 1717-1730 (2007) · doi:10.5194/hess-11-1717-2007
[50] Sherratt, JA, An analysis of vegetation stripe formation in semi-arid landscapes, J Math Biol, 51, 2, 183-197 (2005) · Zbl 1068.92047 · doi:10.1007/s00285-005-0319-5
[51] Sherratt, JA, Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations, Appl Math Comput, 218, 9, 4684-4694 (2012) · Zbl 1244.65155 · doi:10.1016/j.amc.2011.11.005
[52] Sherratt, JA, History-dependent patterns of whole ecosystems, Ecol Complexity, 14, 8-20 (2013) · doi:10.1016/j.ecocom.2012.12.002
[53] Sherratt, JA, Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations, Adv Comput Math, 39, 1, 175-192 (2013) · Zbl 1271.65132 · doi:10.1007/s10444-012-9273-0
[54] Sherratt, JA, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J Appl Math, 76, 1, 293-313 (2016) · Zbl 1382.35323 · doi:10.1137/15m1027991
[55] Siteur, K.; Eppinga, MB; Karssenberg, D.; Baudena, M.; Bierkens, MF; Rietkerk, M., How will increases in rainfall intensity affect semiarid ecosystems?, Water Resour Res, 50, 7, 5980-6001 (2014) · doi:10.1002/2013wr014955
[56] Stewart, J.; Parsons, AJ; Wainwright, J.; Okin, GS; Bestelmeyer, BT; Fredrickson, EL; Schlesinger, WH, Modeling emergent patterns of dynamic desert ecosystems, Ecol Monogr, 84, 3, 373-410 (2014) · doi:10.1890/12-1253.1
[57] Sun, G-Q; Zhang, H-T; Song, Y-L; Li, L.; Jin, Z., Dynamic analysis of a plant-water model with spatial diffusion, J Differ Equ, 329, 395-430 (2022) · Zbl 1490.35033 · doi:10.1016/j.jde.2022.05.009
[58] Thompson, S.; Katul, G., Secondary seed dispersal and its role in landscape organization, Geophys Res Lett, 36, 2 (2009) · doi:10.1029/2008GL036044
[59] Tongway DJ, Ludwig JA (2001) Theories on the origins, maintenance, dynamics, and functioning of banded landscapes. Ecological studies. Springer, New York, pp 20-31. doi:10.1007/978-1-4613-0207-0_2
[60] Ursino, N., The influence of soil properties on the formation of unstable vegetation patterns on hillsides of semiarid catchments, Adv Water Resour, 28, 9, 956-963 (2005) · doi:10.1016/j.advwatres.2005.02.009
[61] Ursino, N.; Contarini, S., Stability of banded vegetation patterns under seasonal rainfall and limited soil moisture storage capacity, Adv Water Resour, 29, 10, 1556-1564 (2006) · doi:10.1016/j.advwatres.2005.11.006
[62] Valentin, C.; d’Herbés, J.; Poesen, J., Soil and water components of banded vegetation patterns, CATENA, 37, 1-2, 1-24 (1999) · doi:10.1016/S0341-8162(99)00053-3
[63] van den Elsen, E.; Stringer, LC; Ita, CD; Hessel, R.; Kéfi, S.; Schneider, FD; Bautista, S.; Mayor, AG; Baudena, M.; Rietkerk, M.; Valdecantos, A.; Vallejo, VR; Geeson, N.; Brandt, CJ; Fleskens, L.; Hemerik, L.; Panagos, P.; Valente, S.; Keizer, JJ; Schwilch, G.; Riva, MJ; Sietz, D.; Christoforou, M.; Hadjimitsis, DG; Papoutsa, C.; Quaranta, G.; Salvia, R.; Tsanis, IK; Daliakopoulos, I.; Claringbould, H.; de Ruiter, PC, Advances in understanding and managing catastrophic ecosystem shifts in Mediterranean ecosystems, Front Ecol Evol (2020) · doi:10.3389/fevo.2020.561101
[64] Vezzoli, R.; Michele, CD; Pavlopoulos, H.; Scholes, RJ, Dryland ecosystems: the coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality, Phys Rev E, 77, 5, 051908 (2008) · doi:10.1103/physreve.77.051908
[65] Yizhaq, H.; Sela, S.; Svoray, T.; Assouline, S.; Bel, G., Effects of heterogeneous soil-water diffusivity on vegetation pattern formation, Water Resour Res, 50, 7, 5743-5758 (2014) · doi:10.1002/2014wr015362
[66] Zhao, L-X; Xu, C.; Ge, Z-M; van de Koppel, J.; Liu, Q-X, The shaping role of self-organization: linking vegetation patterning, plant traits and ecosystem functioning, Proc Biol Sci, 286, 1900, 20182859 (2019) · doi:10.1098/rspb.2018.2859
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.