×

Approximations of the extended Graetz problem to quantify particulate matter transport and deposition in tubes. (English) Zbl 1505.76095

MSC:

76T20 Suspensions
33C05 Classical hypergeometric functions, \({}_2F_1\)
Full Text: DOI

References:

[1] Bird, R. B., Transport phenomena, Appl. Mech. Rev., 55, 1, R1-R4 (2002)
[2] Fernandes, P. S., Gestão de fontes estacionarias de poluição atmosférica, 181-285 (2003)
[3] Seinfeld, J. H.; Pandis, S. N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2016), John Wiley & Sons
[4] WHO, Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia, 2013.
[5] Graetz, L., Ueber die wärmeleitungsfähigkeit von flüssigkeiten, Ann. Phys., 254, 1, 79-94 (1882)
[6] Housiadas, C.; Drossinos, Y., Thermophoretic deposition in tube flow, Aerosol Sci. Technol., 39, 4, 304-318 (2005)
[7] Bejan, A.; Kraus, A. D., Heat Transfer Handbook, vol. 1 (2003), John Wiley & Sons
[8] Basmadjian, D., The Art of Modeling in Science and Engineering with Mathematica (1999), CRC Press · Zbl 0987.00501
[9] Johnston, P., A solution method for the Graetz problem for non-newtonian fluids with Dirichlet and Neumann boundary conditions, Math. Comput. Model., 19, 2, 1-19 (1994) · Zbl 0796.76002
[10] Newman, J., Extension of the Lévêque solution (1967)
[11] Tan, C.; Chia-Jung, H., Mass transfer of decaying products with axial diffusion in cylindrical tubes, Int. J. Heat Mass Transf., 13, 12, 1887-1905 (1970)
[12] Bowen, B.; Levine, S.; Epstein, N., Fine particle deposition in laminar flow through parallel-plate and cylindrical channels, J. Colloid Interface Sci., 54, 3, 375-390 (1976)
[13] Walker, K. L.; Homsy, G. M.; Geyling, F. T., Thermophoretic deposition of small particles in laminar tube flow, J. Colloid Interface Sci., 69, 1, 138-147 (1979)
[14] Patankar, S.; Spalding, D., Paper 5—A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, (Patankar, S. V.; Pollard, A.; Singhal, A. K.; Vanka, S. P., Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion (1983), Pergamon), 54-73
[15] Ye, Y.; Pui, D. Y., Particle deposition in a tube with an abrupt contraction, J. Aerosol Sci., 21, 1, 29-40 (1990)
[16] Chen, D.-R.; Pui, D. Y., Numerical and experimental studies of particle deposition in a tube with a conical contraction-laminar flow regime, J. Aerosol Sci., 26, 4, 563-574 (1995)
[17] Philip, J., Deposition in narrow channels, Chem. Eng. Sci., 50, 5, 793-802 (1995)
[18] Romay, F. J.; Takagaki, S. S.; Pui, D. Y.; Liu, B. Y., Thermophoretic deposition of aerosol particles in turbulent pipe flow, J. Aerosol Sci., 29, 8, 943-959 (1998)
[19] Sippola, M. R.; Nazaroff, W. W., Particle Deposition from Turbulent Flow: Review of Published Research and its Applicability to Ventilation Ducts in commercial buildings, Technical Report (2002), Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States)
[20] Lin, J.-S.; Tsai, C.-J., Thermophoretic deposition efficiency in a cylindrical tube taking into account developing flow at the entrance region, J. Aerosol Sci., 34, 5, 569-583 (2003)
[21] Tyree, C.; Allen, J., Diffusional particle loss upstream of isokinetic sampling inlets, Aerosol Sci. Technol., 38, 10, 1019-1026 (2004)
[22] Walsh, J. K.; Weimer, A.; Hrenya, C., Thermophoretic deposition of aerosol particles in laminar tube flow with mixed convection, J. Aerosol Sci., 37, 6, 715-734 (2006)
[23] Chen, S., Lattice Boltzmann method for slip flow heat transfer in circular microtubes: extended Graetz problem, Appl. Math. Comput., 217, 7, 3314-3320 (2010) · Zbl 1210.80006
[24] Ghiaasiaan, S. M., Convective Heat and Mass Transfer (2011), Cambridge University Press · Zbl 1247.80002
[25] Gu, X.; Emerson, D., A numerical analysis of the Graetz problem using the method of moments, HEFAT (2012)
[26] Ryzhkov, I. I., The extended Graetz problem with specified heat flux for multicomponent fluids with Soret and Dufour effects, Int. J. Heat Mass Transf., 66, 461-471 (2013)
[27] Rajaraman, P.; Heys, J. J., Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods, Int. J. Numer. Method Biomed. Eng., 30, 1, 103-116 (2014)
[28] Rohlfs, W., Entrance length effects on Graetz number scaling in laminar duct flows with periodic obstructions: transport number correlations for spacer-filled membrane channel flows, Int. J. Heat Mass Transf., 97, 842-852 (2016)
[29] Belhocine, A.; Omar, W. Z., Exact Graetz problem solution by using hypergeometric function, Int. J. Heat Technol., 35, 2, 347-353 (2017)
[30] Belhocine, A.; Abdullah, O. I., Numerical simulation of thermally developing turbulent flow through a cylindrical tube, Int. J. Adv. Manuf. Technol., 102, 5, 2001-2012 (2019)
[31] Bennett, T. D., Correlations for the Graetz problem in convection—part 1: for round pipes and parallel plates, Int. J. Heat Mass Transf., 136, 832-841 (2019)
[32] Belhocine, A.; Omar, W. Z.W., Analytical solution and numerical simulation of the generalized Levèque equation to predict the thermal boundary layer, Math. Comput. Simul., 180, 43-60 (2021) · Zbl 1524.76158
[33] Sellars, J. R.; Tribus, M.; Klein, J., Heat Transfer to Laminar Flow in a Round Tube Or Flat Conduit: The Graetz Problem Extended, Technical Report (1954)
[34] Notter, R.; Sleicher, C., A solution to the turbulent Graetz problem—IIIfully developed and entry region heat transfer rates, Chem. Eng. Sci., 27, 11, 2073-2093 (1972)
[35] Ruckenstein, E.; Prieve, D. C., Rate of deposition of Brownian particles under the action of london and double-layer forces, J. Chem. Soc., Faraday Trans. 2, 69, 1522-1536 (1973)
[36] Spielman, L. A.; Friedlander, S., Role of the electrical double layer in particle deposition by convective diffusion, J. Colloid Interface Sci., 46, 1, 22-31 (1974)
[37] Dahneke, B., Diffusional deposition of particles, J. Colloid Interface Sci., 48, 3, 520-522 (1974)
[38] Greenberg, M. D., Advanced Engineering Mathematics (1988), Prentice-Hall · Zbl 0673.00004
[39] Flagan, R. C.; Seinfeld, J. H., Fundamentals of air Pollution Engineering (2012), Courier Corporation
[40] Bateman, H., Higher Transcendental Functions [Volumes I-III], vol. 1 (1953), McGraw-Hill Book Company · Zbl 0051.30303
[41] Zaitsev, V. F.; Polyanin, A. D., Handbook of Exact Solutions for Ordinary Differential Equations (2002), CRC Press · Zbl 1031.35001
[42] Rice, R. G.; Do, D. D., Applied Mathematics and Modeling for Chemical Engineers (Wiley Series in Chemical Engineering) (1994), Wiley
[43] Campos, L., On some solutions of the extended confluent hypergeometric differential equation, J. Comput. Appl. Math., 137, 1, 177-200 (2001) · Zbl 1008.34003
[44] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table, National Bureau of Standards Applied Mathematics Series, vol. 55 (1965), US Department of Commerce
[45] Polyanin, A. D.; Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations (2002), CRC Press · Zbl 1031.35001
[46] Gormley, P.; Kennedy, M., Diffusion from a stream flowing through a cylindrical tube, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 52, 163-169 (1948), JSTOR · Zbl 0033.32101
[47] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 (1948), US Government Printing Office · Zbl 0515.33001
[48] Tan, Z., Air monitoring, Air Pollution and Greenhouse Gases, 447-461 (2014), Springer
[49] Nguyen, N.-T.; Wereley, S. T.; Shaegh, S. A.M., Fundamentals and Applications of Microfluidics (2019), Artech House
[50] Hinds, W. C.; Zhu, Y., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2022), John Wiley & Sons
[51] Zhu, C., 2 - Isokinetic sampling and cascade samplers, (Soo, S. L., Instrumentation for Fluid Particle Flow (1999), William Andrew Publishing: William Andrew Publishing Park Ridge, NJ), 9-46
[52] Wilcox, J. D., Isokinetic flow and sampling, J. Air Pollut. Control. Assoc., 5, 4, 226-245 (1956)
[53] Zhu, R.; Zhang, Y.; Yuan, Y.; Li, S., Deposition loss of particles in the sampling lines of continuous emission monitoring system (CEMS) in coal-fired power plants, Aerosol Air Qual. Res., 18, 6, 1483-1492 (2018)
[54] Fuchs, N., Sampling of aerosols, Atmos. Environ. (1967), 9, 8, 697-707 (1975)
[55] Saushin, I.; Goltsman, A., Uncertainty of isokinetic sampling of the phase composition of a gas-oil-water mixture at different regimes of a developed horizontal pipe flow, J. Pet. Sci. Eng., 195, 107901 (2020)
[56] Brown, G. M., Heat or mass transfer in a fluid in laminar flow in a circular or flat conduit, AlChE J., 6, 2, 179-183 (1960)
[57] Bhatti, M.; Shah, R., Turbulent and Transition Flow Convective Heat Transfer in Ducts (1987), Wiley: Wiley New York
[58] Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S., Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation, Renew. Sustain. Energy Rev., 56, 246-260 (2016)
[59] Wilks, D. S., Statistical Methods in the Atmospheric Sciences (International Geophysics Series; v. 91) (2006), Academic Press
[60] McMurry, P., AEROSOLS | observations and measurements, (North, G. R.; Pyle, J.; Zhang, F., Encyclopedia of Atmospheric Sciences (Second Edition) (2015), Academic Press: Academic Press Oxford), 53-65
[61] Chen, W.-H.; Mutuku, J. K.; Yang, Z.-W.; Hwang, C.-J.; Lee, W. J.; Ashokkumar, V., An investigation for airflow and deposition of PM \({}_{2.5}\) contaminated with SAR-CoV-2 virus in healthy and diseased human airway, Environ. Res., 197, 111096 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.