×

Energy dissipation analysis for large-strain cylindrical cavity expansion problem in cohesive-frictional soils. (English) Zbl 1505.74019

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
Full Text: DOI

References:

[1] Bishop, R. F.; Hill, R.; Mott, N. F., Theory of identation and hardness tests, Proc. Phys. Soc., 57, 147-159 (1945)
[2] Mo, P. Q.; Marshall, A. M.; Yu, H. S., Elastic-plastic solutions for expanding cavities embedded in two different cohesive-frictional materials, Int. J. Numer. Anal. Meth. Geomech., 38, 9, 961-977 (2014)
[3] Salgado, R.; Mitchell, J. K.; Jamiolkowski, M., Cavity expansion and penetration resistance in sand, J. Geotech. Geoenviron. Eng., 123, 4, 344-354 (1997)
[4] Russell, A. R.; Khalili, N., Drained cavity expansion in sands exhibiting particle crushing, Int. J. Numer. Anal. Meth. Geomech., 26, 4, 323-340 (2002) · Zbl 0995.74506
[5] Mo, P. Q.; Marshall, A. M.; Yu, H. S., Centrifuge modelling of cone penetration tests in layered soils, Géotechnique, 65, 6, 468-481 (2015)
[6] Mo, P. Q.; Marshall, A. M.; Yu, H. S., Interpretation of cone penetration test data in layered soils using cavity expansion analysis, J. Geotech. Geoenviron. Eng., 143, 1, Article 04016084 pp. (2017)
[7] Collins, I. F.; Stimpson, J. R., Similarity solutions for drained and undrained cavity expansions in soils, Géotechnique, 44, 1, 21-34 (1994)
[8] Collins, I. F.; Yu, H. S., Undrained cavity expansions in critical state soils, Int. J. Numer. Anal. Meth. Geomech., 20, 7, 489-516 (1996) · Zbl 0885.73065
[9] Zhou, H.; Liu, H.; Yuan, J., A novel analytical approach for predicting the noncylindrical pile penetration-induced soil displacement in undrained soil by combining use of cavity expansion and strain path methods, Int. J. Numer. Anal. Meth. Geomech., 42, 11, 1270-1305 (2018)
[10] Zou, J. F.; Li, C.; Wang, F., A new procedure for ground response curve (GRC) in strain-softening surrounding rock, Comput. Geotech., 89, 1, 81-91 (2017)
[11] Zou, J. F.; Wei, A.; Yang, T., Elasto-plastic solution for shallow tunnel in semi-infinite space, Appl. Math. Model., 64, 669-687 (2018) · Zbl 1480.74036
[12] Luo, W.; Zou, J. F.; Wei, A., Solution for a circular tunnel in strain-softening rock with seepage forces, Geomech. Eng., 22, 6, 553-564 (2020)
[13] Zou, J. F.; Sheng, Y. M.; Xia, M. Y.; Wang, F., A novel numerical-iterative-approach for strain-softening surrounding rock incorporating rockbolts effectiveness and hydraulic-mechanical coupling based on three-dimensional Hoek-Brown strength criterion, Tunn. Undergr. Sp. Tech., 10, 1, Article 103358 pp. (2020)
[14] Randolph, M. F.; Carter, J. P.; Wroth, C. P., Driven piles in clay-the effects of installation and subsequent consolidation, Géotechnique, 29, 4, 361-393 (1979)
[15] Yuan, B. X.; Chen, R.; Deng, G., Accuracy of interpretation methods for deriving p-y curves from model pile tests in layered soils, J. Test. Eval., 45, 4, 1238-1246 (2017)
[16] Peng, Y.; Liu, J.; Ding, X., Performance of X-section concrete pile group in coral sand under vertical loading, China Ocean Eng, 34, 5, 621-630 (2020)
[17] Peng, Y.; Liu, H.; Li, C., The detailed particle breakage around the pile in coral sand, Acta Geotech, 16, 6, 1971-1981 (2021)
[18] Chen, H. H.; Mo, P. Q., An undrained expansion solution of cylindrical cavity in SANICLAY for K0 consolidated clays, J. Rock Mech. Geotech., 1-14 (2022)
[19] Mo, P. Q.; Chen, H. H.; Yu, H. S., Undrained cavity expansion in anisotropic soils with isotropic and frictional destructuration, Acta Geotech, 1-22 (2022)
[20] Chen, S. L.; Liu, K., Undrained cylindrical cavity expansion in anisotropic critical state soils, Géotechnique, 69, 3, 189-202 (2018)
[21] Chen, S. L.; Liu, K.; Castro, J.; Sivasithamparam, N., Discussion: undrained cylindrical cavity expansion in anisotropic critical state soils, Géotechnique, 69, 11, 1-11 (2018)
[22] Sivasithamparam, N.; Castro, J., Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution, Acta Geotech, 13, 3, 729-746 (2018)
[23] Liu, K.; Chen, S. L., Analysis of cylindrical cavity expansion in anisotropic critical state soils under drained conditions, Can. Geotech. J., 56, 5, 675-686 (2019)
[24] Sivasithamparam, N.; Castro, J., Undrained cylindrical cavity expansion in clays with fabric anisotropy and structure: Theoretical solution, Comput. Geotech., 120, 1, Article 103386 pp. (2020)
[25] Papanastasiou, P.; Durban, D., Elastoplastic analysis of cylindrical cavity problems in geomaterials, Int. J. Numer. Anal. Methods Geomech., 21, 2, 133-149 (1997) · Zbl 0916.73038
[26] Durban, D.; Papanastasiou, P., Cylindrical cavity expansion and contraction in pressure sensitive geomaterials, Acta Mech, 122, 1, 99-122 (1997) · Zbl 0884.73025
[27] Zhou, H.; Kong, G.; Liu, H., Similarity solution for cavity expansion in thermoplastic soil, Int. J. Numer. Anal. Meth. Geomech., 42, 2, 274-294 (2018)
[28] Vesic, A. S., Expansion of cavities in infinite soil mass, J. Soil Mech. Found. Div., 98, 3, 265-290 (1972)
[29] Yu, H. S., Cavity expansion methods in geomechancis (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, the Netherlands · Zbl 1026.74001
[30] Cao, L. F.; Teh, C. I.; Chang, M. F., Undrained cavity expansion in modified Cam clay I: theoretical analysis, Géotechnique, 51, 4, 323-334 (2001)
[31] Cao, L. F.; Teh, C. I.; Chang, M. F., Analysis of undrained cavity expansion in elastoplastic soils with non-linear elasticity, Int. J. Numer. Anal. Meth. Geomech., 26, 1, 25-52 (2002) · Zbl 1082.74536
[32] Chen, S. L.; Abousleiman, Y. N., Exact undrained elastoplastic solution for cylindrical cavity expansion in modified Cam Clay soil, Géotechnique, 62, 3, 447-456 (2012)
[33] Chen, S. L.; Abousleiman, Y. N., Exact drained solution for cylindrical cavity expansion in modified Cam Clay soil, Géotechnique, 63, 6, 510-517 (2013)
[34] Zhou, H.; Liu, H. L.; Kong, G. Q., Analytical solution for pressure-controlled elliptical cavity expansion in elastic-perfectly plastic soil, Géotechnique Lett, 4, 2, 72-78 (2014)
[35] Zhou, H.; Kong, G.; Li, P., Flat cavity expansion: theoretical model and application to the interpretation of the flat dilatometer test, J. Eng. Mech., 142, 1, Article 04015058 pp. (2015)
[36] Chen, H. H.; Li, L.; Li, J. P., An elastoplastic solution for spherical cavity undrained expansion in overconsolidated soils, Comput. Geotech., 12, 6, Article 103759 pp. (2020)
[37] Durban, D.; Masri, R., Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium, Int. J. Solids Struct., 41, 20, 5697-5716 (2004) · Zbl 1159.74330
[38] Masri, R.; Durban, D., Quasi-static cylindrical cavity expansion in an elastoplastic compressible Mises solid, Int. J. Solids Struct., 43, 25-26, 7518-7533 (2006) · Zbl 1120.74349
[39] Cohen, T.; Durban, D., Hypervelocity cavity expansion in porous elastoplastic solids, J. Appl. Mech., 80, 1 (2013)
[40] dos Santos, T.; Vaz-Romero, A.; Rodríguez-Martínez, J. A., Dynamic cylindrical cavity expansion in orthotropic porous ductile materials, Int. J. Impact Eng., 132, Article 103325 pp. (2019)
[41] Cleja-Tigoiu, S.; Cazacu, O.; Tigoiu, V., Dynamic expansion of a spherical cavity within a rate-dependent compressible porous material, Int. J. Plasticity, 24, 5, 775-803 (2008) · Zbl 1144.74341
[42] Papanastasiou, P.; Thiercelin, M.; Cook, J.; Durban, D., The influence of plastic yielding on breakdown pressure in hydraulic fracturing, (Proc., 35th US Symp. on Rock Mechanics (1995), A.A. Balkema: A.A. Balkema Rotterdam, Netherlands), 281-286, edited by J. Daemen and R. Schultz
[43] Durban, D.; Papanastasiou, P., Elastoplastic response of pressure sensitive solids, Int. J. Num. Anal. Meth. Geomech., 21, 7, 423-441 (1997) · Zbl 0893.73051
[44] Patsalides, K.; Papanastasiou, P., Influence of hardening and softening on limit pressure of cylindrical cavity expansion, Int. J. Geomech., 19, 4, Article 04019011 pp. (2019)
[45] Papanastasiou, P.; Vardoulakis, I., Numerical treatment of progressive localization in relation to borehole stability, Int. J. Num. Anal. Meth. Geomech., 16, 6, 389-424 (1992)
[46] Papanastasiou, P.; Vardoulakis, I., Bifurcation analysis of deep boreholes: II. Scale effect, Int. J. Num. Anal. Meth. Geomech., 13, 2, 183-198 (1989) · Zbl 0732.73054
[47] Zervos, A.; Papanastasiou, P.; Vardoulakis, I., Modelling of localization and scale effect in thick-walled cylinders with gradient elastoplasticity, Int. J. Solids Struct., 38, 30, 5081-5095 (2001) · Zbl 0997.74054
[48] Zervos, A.; Vardoulakis, I.; Papanastasiou, P., Influence of nonassociativity on localization and failure in geomechanics based on gradient elastoplasticity, Int. J. Geomech., 7, 1, 63-74 (2007)
[49] Vardoulakis, I.; Papanastasiou, P., Bifurcation analysis of deep boreholes: I. Surface instabilities, Int. J. Num. Anal. Meth. Geomech., 12, 4, 379-399 (1988)
[50] Russell, A. R.; Khalili, N., A bounding surface plasticity model for sands exhibiting particle crushing, Can. Geotech. J., 41, 6, 1179-1192 (2004)
[51] Jiang, M. J.; Sun, Y. G., Cavity expansion analyses of crushable granular materials with state-dependent dilatancy, Int. J. Numer. Anal. Meth. Geomech., 36, 6, 723-742 (2012)
[52] Zou, J. F.; Tong, W.; Zhao, J., Energy dissipation of cavity expansion based on generalized non-linear failure criterion under high stresses, J. Cent. South Univ., 19, 5, 1419-1424 (2012), CNKI:SUN:ZNGY.0.2012-05-038
[53] Luo, W.; Li, J. B.; Zou, J. F., A Novel Simple Solution to Cavity Expansion Problem in Crushable Granular Materials Based on Energy Dissipation Method, Int. J. Geomech., 22, 2, Article 04021281 pp. (2022)
[54] Yu, M. H., Twin shear stress yield criterion, Int. J. Mech. Sci., 25, 1, 71-74 (1983)
[55] Yu, M. H., Unified strength theory and applications (2004), Springer-Verlag Berlin Heidelberg: Springer-Verlag Berlin Heidelberg New York · Zbl 1059.74002
[56] Zhao, C. F.; Fei, Y.; Zhao, C.; Jia, S. H., Analysis of expanded radius and internal expanding pressure for undrained cylindrical cavity expansion, Int. J. Geomech., 18, 2 (2018), 04017139.1-8
[57] Zhao, C. F.; Wang, Y. B.; Zhao, C., Analysis of Drained Cavity Unloading-Contraction Considering Different Degrees of Intermediate Principal Stress with Unified Strength Theory, Int. J. Geomech., 20, 7, Article 04020086 pp. (2020)
[58] Yu, H. S.; Houlsby, G. T., Finite cavity expansion in dilatant soils: Loading analysis, Géotechnique, 41, 2, 173-183 (1991)
[59] Chadwick, P., The quasi-static expansion of a spherical cavity in metals and ideal soils, Q. J. Mech. Appl. Math., 12, 1, 52-71 (1959) · Zbl 0085.38701
[60] Zou, J. F.; Xia, Z., Closed-form solution for cavity expansion in strain-softening and undrained soil mass based on the unified strength failure criterion, Int. J. Geomech., 17, 9, Article 04017046 pp. (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.