×

\(p\)-Laplace diffusion for distance function estimation, optimal transport approximation, and image enhancement. (English) Zbl 1505.65308

Summary: In this paper, we propose ADMM-based numerical schemes for power-law diffusion equations involving the \(p\)-Laplacian \(\operatorname{div}(|\nabla u|^{p-2} \nabla u)\) with constant (\(p = \text{const}\)) and variable (\(p = p(\boldsymbol{x})\)) exponents. Applications to distance function and optimal transport approximations (\(p\) is large and constant) and image enhancement (\(p\) is small and variable) are considered.

MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
49Q22 Optimal transportation
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Alamgir, M.; von Luxburg, U., Phase transition in the family of p-resistances, (Neural Information Processing Systems. Neural Information Processing Systems, NIPS (2011))
[2] Ambrosio, L., Lecture notes on optimal transport problems, (Mathematical Aspects of Evolving Interfaces. Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, vol. 1812 (2003), Springer), 1-52 · Zbl 1047.35001
[3] Aström, F.; Schnorr, C., On coupled regularization for non-convex variational image enhancement, (2015 3rd IAPR Asian Conference on Pattern Recognition. 2015 3rd IAPR Asian Conference on Pattern Recognition, ACPR (2015)), 786-790
[4] Aubert, G.; Aujol, J.-F., Poisson skeleton revisited: a new mathematical perspective, J. Math. Imaging Vis., 1-11 (2012)
[5] Aubert, G.; Kornprobst, P., Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Applied Mathematical Sciences, vol. 147 (2006), Springer · Zbl 1110.35001
[6] Aujol, J.-F.; Gilboa, G.; Chan, T.; Osher, S., Structure-texture image decomposition - modeling, algorithms, and parameter selection, Int. J. Comput. Vis., 67, 1, 111-136 (2006) · Zbl 1287.94011
[7] Babuška, I.; Banerjee, U.; Osborn, J. E., Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., 12, 1-125 (2003) · Zbl 1048.65105
[8] Belyaev, A.; Fayolle, P.-A., On variational and PDE-based distance function approximations, Comput. Graph. Forum, 34, 8, 104-118 (2015)
[9] Benamou, J. D.; Carlier, G., Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, J. Optim. Theory Appl., 167, 1-26 (2015) · Zbl 1326.49074
[10] Bhattacharya, T.; DiBenedetto, E.; Manfredi, J., Limits as \(p \to \infty\) of \(\Delta_p u_p = f\) and related extremal problems, Rend. Semin. Mat. Univ. Pol. (Torino), Fascicolo Speciale Nonlinear PDEs, 15-68 (1989)
[11] Biswas, A.; Shapiro, V.; Tsukanov, I., Heterogeneous material modeling with distance fields, Comput. Aided Geom. Des., 21, 215-242 (2004) · Zbl 1069.65508
[12] Blomgren, P.; Chan, T. F.; Mulet, P.; Wong, C. K., Total variation image restoration: numerical methods and extensions, (Proceedings of the IEEE International Conference on Image Processing, vol. 3 (1997)), 384-387
[13] Bühler, T.; Hein, M., Spectral clustering based on the graph p-Laplacian, (Proc. 26th Annual International Conference on Machine Learning. Proc. 26th Annual International Conference on Machine Learning, ICML ’09 (2011)), 81-88
[14] Burger, M.; Osher, S. J., A survey on level set methods for inverse problems and optimal design, Eur. J. Appl. Math., 16, 2, 263-301 (2005) · Zbl 1091.49001
[15] Calakli, F.; Taubin, G., SSD: smooth signed distance surface reconstruction, Comput. Graph. Forum, 30, 7, 1993-2002 (2011)
[16] Caliari, M.; Zuccher, S., Quasi-Newton minimization for the \(p(x)\)-Laplacian problem, Am. J. Comput. Appl. Math., 309, 122-131 (2017) · Zbl 1462.90152
[17] Candes, E. J.; Wakin, M. B.; Boyd, S. P., Enhancing sparsity by reweighted \(l_1\) minimization, J. Fourier Anal. Appl., 14, 5-6, 877-905 (2008) · Zbl 1176.94014
[18] Cao, W.; Huang, W.; Russell, R. D., Approaches for generating moving adaptive meshes: location versus velocity, Appl. Numer. Math., 47, 121-138 (2003) · Zbl 1031.65109
[19] Chartrand, R.; Yin, W., Iteratively reweighted algorithms for compressive sensing, (IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008 (2008)), 3869-3872
[20] Chartrand, R.; Yin, W., Nonconvex sparse regularization and splitting algorithms, (Splitting Methods in Communication, Imaging, Science, and Engineering (2016), Springer), 237-249 · Zbl 1372.65167
[21] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 4, 1383-1406 (2006) · Zbl 1102.49010
[22] Crane, K.; Weischedel, C.; Wardetzky, M., Geodesics in heat: a new approach to computing distance based on heat flow, ACM Trans. Graph., 32, Article 152 pp. (2013)
[23] Desbrun, M.; Kanso, E.; Tong, Y., Discrete differential forms for computational modeling, (Discrete Differential Geometry (2008), Springer), 287-324 · Zbl 1152.58001
[24] Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents (2011), Springer · Zbl 1222.46002
[25] Evans, L. C.; Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Am. Math. Soc., 137, 66 (1999) · Zbl 0920.49004
[26] Freytag, M.; Shapiro, V.; Tsukanov, I., Finite element analysis in situ, Finite Elem. Anal. Des., 47, 9, 957-972 (2011)
[27] Glowinski, R.; Marroco, A., Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problémes de dirichlet non linéaires, Anal. Numér., 9, R2, 41-76 (1975), Revue française d’automatique, informatique, recherche opérationnelle · Zbl 0368.65053
[28] Glowinski, R.; Osher, S. J.; Yin, W., Splitting Methods in Communication, Imaging, Science, and Engineering (2017), Springer
[29] Gorelick, L.; Blank, M.; Shechtman, E.; Irani, M.; Basri, R., Actions as space-time shapes, IEEE Trans. Pattern Anal. Mach. Intell., 29, 12, 2247-2253 (2007)
[30] Gorelick, L.; Galun, M.; Sharon, E.; Basri, R.; Brandt, A., Shape representation and classification using the Poisson equation, IEEE Trans. Pattern Anal. Mach. Intell., 28, 12, 1991-2005 (2006)
[31] Grisvard, P., Elliptic Problems in Nonsmooth Domains (2011), SIAM · Zbl 1231.35002
[32] Guo, X.; Li, Y.; Ling LIME, H., Low-light image enhancement via illumination map estimation, IEEE Trans. Image Process., 26, 2, 982-993 (2017) · Zbl 1409.94202
[33] Han, Z.; Li, H.; Yin, W., Compressive Sensing for Wireless Networks (2013), Cambridge University Press
[34] Hastie, T.; Tibshirani, R.; Wainwright, M., Statistical Learning with Sparsity: the Lasso and Generalizations (2015), CRC Press · Zbl 1319.68003
[35] He, K.; Sun, J.; Tang, X., Single image haze removal using dark channel prior, IEEE Trans. Pattern Anal. Mach. Intell., 33, 12, 2341-2353 (2011)
[36] Jones, M. W.; Baerentzen, J. A.; Sramek, M., 3D distance fields: a survey of techniques and applications, IEEE Trans. Vis. Comput. Graph., 12, 4, 581-599 (2006)
[37] Kawohl, B., On a family of torsional creep problems, J. Reine Angew. Math., 410, 1, 1-22 (1990) · Zbl 0701.35015
[38] Klingner, B. M.; Shewchuk, J. R., Aggressive tetrahedral mesh improvement, (Proceedings of the 16th International Meshing Roundtable (2008), Springer), 3-23 · Zbl 1238.65011
[39] Koschier, D.; Deul, C.; Brand, M.; Bender, J., An hp-adaptive discretization algorithm for signed distance field generation, IEEE Trans. Vis. Comput. Graph., 23, 10, 2208-2221 (2017)
[40] Li, W.; Ryu, E. K.; Osher, S.; Yin, W.; Gangbo, W., A parallel method for earth mover’s distance, J. Sci. Comput., 75, 1, 182-197 (2018) · Zbl 1398.65124
[41] Mazón, J. M.; Rossi, J. D.; Toledo, J., Mass transport problems obtained as limits of \(p\)-Laplacian type problems with spatial dependence, Adv. Nonlinear Anal., 3, 3, 133-140 (2014) · Zbl 1297.49007
[42] Meyer, Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22 (2001), AMS · Zbl 0987.35003
[43] Nikolova, M., Energy minimization methods, (Scherzer, O., Handbook of Mathematical Methods in Imaging (2015), Springer), 157-204 · Zbl 1331.65089
[44] Oh, S.; Woo, H.; Yun, S.; Kang, M., Non-convex hybrid total variation for image denoising, J. Vis. Commun. Image Represent., 24, 3, 332-344 (2013)
[45] Radulescu, V. D.; Repovs, D. D., Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, vol. 9 (2015), CRC Press · Zbl 1343.35003
[46] Roget, B.; Sitaraman, J., Wall distance search algorithm using voxelized marching spheres, J. Comput. Phys., 241, 76-94 (2013) · Zbl 1349.76643
[47] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1, 259-268 (1992) · Zbl 0780.49028
[48] Ružička, M., Electrorheological Fluids: Modeling and Mathematical Theory (2000), Springer · Zbl 0968.76531
[49] Selesnick, I. W.; Bayram, I., Sparse signal estimation by maximally sparse convex optimization, IEEE Trans. Signal Process., 62, 5, 1078-1092 (2014) · Zbl 1394.94510
[50] Slepčev, D.; Thorpe, M., Analysis of \(p\)-Laplacian regularization in semi-supervised learning (2017), Tech. rep., arXiv preprint
[51] Solomon, J.; Rustamov, R.; Guibas, L.; Butscher, A., Earth mover’s distances on discrete surfaces, Proc. SIGGRAPH 2014. Proc. SIGGRAPH 2014, ACM Trans. Graph., 33, 4, Article 67 pp. (2014) · Zbl 1396.65063
[52] Tang, C.; Hou, C.; Hou, Y.; Wang, P.; Li, W., An effective edge-preserving smoothing method for image manipulation, Digit. Signal Process., 63, 10-24 (2017)
[53] Toulopoulos, I.; Wick, T., Numerical methods for power-law diffusion problems, SIAM J. Sci. Comput., 39, 3, 681-710 (2017) · Zbl 1365.65263
[54] Tournois, J.; Wormser, C.; Alliez, P.; Desbrun, M., Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation, ACM Trans. Graph., 28, 3, Article 75 pp. (2009)
[55] Tucker, P. G., Assessment of geometric multilevel convergence and a wall distance method for flows with multiple internal boundaries, Appl. Math. Model., 22, 293-311 (1998) · Zbl 1428.76141
[56] Tucker, P. G., Hybrid Hamilton-Jacobi-Poisson wall distance function model, Comput. Fluids, 44, 1, 130-142 (2011) · Zbl 1271.76258
[57] Vese, L. A.; Le Guyader, C., Variational Methods in Image Processing (2016), CRC Press · Zbl 1332.94003
[58] Villani, C., Topics in Optimal Transportation, vol. 58 (2003), American Mathematical Society · Zbl 1106.90001
[59] Wukie, N. A.; Orkwis, P. D., A \(p\)-Poisson wall distance approach for turbulence modeling, (23rd AIAA Computational Fluid Dynamics Conference (2017))
[60] Xia, H.; Tucker, P. G.; Coughlin, G., Novel applications of BEM based Poisson level set approach, Eng. Anal. Bound. Elem., 36, 907-912 (2012) · Zbl 1352.65599
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.