×

Numerical simulation of language interactions using online coupled generalized multiscale finite element method. (English) Zbl 1505.65259

Summary: In this paper, we present a new mathematical model of the interaction of two languages. In the model, we distinguish percentages of people who speak a non-target language, a target language with low and high proficiency, and both languages considering the low and high proficiency levels in the target language. Therefore, the solution consists of five fields. Furthermore, we assume the diffusive and convective spread of the languages, considering the overflow between them. Thus, the mathematical model is defined by a coupled system of partial differential equations for the five fields. Since the mathematical model is coupled and the medium is heterogeneous, we have implemented a multiscale method. The proposed multiscale method is based on the Generalized Multiscale Finite Element Method (GMsFEM). In addition to offline multiscale basis functions, we also construct online multiscale basis functions. The online basis functions can account for changes in the heterogeneity of the medium caused by migration flows. Numerical results have shown that such online enrichment can significantly improve the accuracy of multiscale modeling.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
68T50 Natural language processing
91F20 Linguistics

Software:

ParaView; SyFi; FEniCS
Full Text: DOI

References:

[1] Bacalu, F., The social processes that underlie language use, Anal. Metaphys., 12, 178-183 (2013)
[2] Labov, W., The reflection of social processes in linguistic structures, (Readings in the Sociology of Language (2012), De Gruyter Mouton), 240-251
[3] Fishman, J. A., The Sociology of Language (1972), Newbury House: Newbury House Rowley, Ma
[4] Haugen, E., The ecology of language, Linguist. Report. (1971)
[5] Grenoble, L. A.; Whaley, L. J., Saving Languages: An Introduction to Language Revitalization (2005), Cambridge University Press
[6] Grenoble, L. A., Language contact in the East Slavic contact zone, Balkanistica, 28, 225-250 (2015)
[7] Baggs, I.; Freedman, H., A mathematical model for the dynamics of interactions between a unilingual and a bilingual population: Persistence versus extinction, J. Math. Sociol., 16, 1, 51-75 (1990) · Zbl 0725.92027
[8] Baggs, I.; Freedman, H., Can the speakers of a dominated language survive as unilinguals?: a mathematical model of bilingualism, Math. Comput. Modelling, 18, 6, 9-18 (1993) · Zbl 0792.92033
[9] Abrams, D. M.; Strogatz, S. H., Modelling the dynamics of language death, Nature, 424, 6951, 900 (2003)
[10] Patriarca, M.; Leppänen, T., Modeling language competition, Physica A, 338, 1-2, 296-299 (2004)
[11] Wyburn, J.; Hayward, J., The future of bilingualism: an application of the Baggs and Freedman model, J. Math. Sociol., 32, 4, 267-284 (2008) · Zbl 1231.91384
[12] Fujie, R.; Aihara, K.; Masuda, N., A model of competition among more than two languages, J. Stat. Phys., 151, 1, 289-303 (2013) · Zbl 1270.91073
[13] Owolabi, K. M.; Gómez-Aguilar, J., Numerical simulations of multilingual competition dynamics with nonlocal derivative, Chaos Solitons Fractals, 117, 175-182 (2018) · Zbl 1442.91080
[14] Efendiev, Y.; Pankov, A., Numerical homogenization of nonlinear random parabolic operators, Multiscale Model. Simul., 2, 2, 237-268 (2004) · Zbl 1181.76113
[15] Talonov, A.; Vasilyeva, M., On numerical homogenization of shale gas transport, J. Comput. Appl. Math., 301, 44-52 (2016) · Zbl 1382.76177
[16] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods: Theory and Applications, Vol. 4 (2009), Springer Science & Business Media · Zbl 1163.65080
[17] Efendiev, Y.; Galvis, J.; Hou, T. Y., Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251, 116-135 (2013), URL http://www.sciencedirect.com/science/article/pii/S0021999113003392 · Zbl 1349.65617
[18] Chung, E. T.; Efendiev, Y.; Leung, W. T., Constraint energy minimizing generalized multiscale finite element method, Comput. Methods Appl. Mech. Engrg., 339, 298-319 (2018) · Zbl 1440.65195
[19] Gao, K.; Fu, S.; Gibson, R. L.; Chung, E. T.; Efendiev, Y., Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, J. Comput. Phys., 295, 161-188 (2015) · Zbl 1349.74322
[20] Spiridonov, D.; Vasilyeva, M.; Leung, W. T., A generalized multiscale finite element method (GMsFEM) for perforated domain flows with Robin boundary conditions, J. Comput. Appl. Math., 357, 319-328 (2019) · Zbl 1426.65183
[21] Vasilyeva, M.; Mistry, A.; Mukherjee, P. P., Multiscale model reduction for pore-scale simulation of Li-ion batteries using GMsFEM, J. Comput. Appl. Math., 344, 73-88 (2018) · Zbl 1524.65603
[22] Ammosov, D.; Vasilyeva, M.; Chung, E. T., Generalized multiscale finite element method for thermoporoelasticity problems in heterogeneous and fractured media, J. Comput. Appl. Math., 407, Article 113995 pp. (2022) · Zbl 1482.74157
[23] Brown, D. L.; Vasilyeva, M., A generalized multiscale finite element method for poroelasticity problems I: Linear problems, J. Comput. Appl. Math., 294, 372-388 (2016) · Zbl 1330.74151
[24] Akkutlu, I. Y.; Efendiev, Y.; Vasilyeva, M.; Wang, Y., Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media, J. Nat. Gas Sci. Eng., 48, 65-76 (2017)
[25] Chung, E. T.; Efendiev, Y.; Leung, W. T., Residual-driven online generalized multiscale finite element methods, J. Comput. Phys., 302, 176-190 (2015) · Zbl 1349.65615
[26] Spiridonov, D.; Stepanov, S., An online generalized multiscale finite element method for heat and mass transfer problem with artificial ground freezing, J. Comput. Appl. Math., 417, Article 114561 pp. (2023) · Zbl 1502.65141
[27] Ammosov, D.; Grigorev, A. V.; Malysheva, N.; Zamorshchikova, L. S., Numerical modeling two natural languages interaction, J. Comput. Appl. Math., 407, Article 114074 pp. (2022) · Zbl 1493.65145
[28] Ammosov, D.; Efendiev, Y.; Grekova, E.; Vasilyeva, M., Generalized macroscale model for cosserat elasticity using generalized multiscale finite element method, J. Comput. Phys., 461, Article 111011 pp. (2022) · Zbl 07525167
[29] Ammosov, D.; Vasilyeva, M.; Nasedkin, A.; Efendiev, Y., Generalized multiscale finite element method for piezoelectric problem in heterogeneous media, Eng. Anal. Bound. Elem., 135, 12-25 (2022) · Zbl 1521.74203
[30] Logg, A.; Mardal, K.-A.; Wells, G., Automated Solution of Differential Equations By the Finite Element Method: The FEniCS Book, Vol. 84 (2012), Springer Science & Business Media · Zbl 1247.65105
[31] Ahrens, J.; Geveci, B.; Law, C., Paraview: An end-user tool for large data visualization, Vis. Handb., 717, 8 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.