×

Color image and video restoration using tensor CP decomposition. (English) Zbl 1505.65172

Summary: This paper proposes a new approach to image and video restoration. This approach constructs a degradation model based on a tensor representation, where a color image is represented by a third-order tensor, and a video composed of color images is a fourth-order tensor. Applying tensor CP decomposition to our original problem leads to three subproblems. To solve those subproblems, we apply global LSQR algorithm, and a new algorithm based on Golub Kahan bidiagonalization. Some numerical tests are presented to show the effectiveness of the proposed methods.

MSC:

65F22 Ill-posedness and regularization problems in numerical linear algebra
15A69 Multilinear algebra, tensor calculus
65F10 Iterative numerical methods for linear systems
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

LSQR; CRAIG
Full Text: DOI

References:

[1] Bentbib, AH; ElGuide, M.; Jbilou, K.; Onunwor, E.; Reichel, L., Solution methods for linear discrete ill-posed problems for color image restoration, BIT Numer. Math., 58, 555-576 (2018) · Zbl 1402.65031 · doi:10.1007/s10543-018-0706-0
[2] Bentbib, AH; Khouia, A.; Sadok, H., The LSQR method for solving tensor least-squares problems, Electron. Trans. Numer. Anal., 55, 92-111 (2022) · Zbl 1477.65067 · doi:10.1553/etna_vol55s92
[3] Bouhamidi, A.; Jbilou, K., Sylvester Tikhonov-regularization methods in image restoration, J. Comput. Appl. Math., 206, 86-98 (2007) · Zbl 1131.65036 · doi:10.1016/j.cam.2006.05.028
[4] Calvetti, D.; Golub, GH; Reichel, L., Estimation of the L-curve via Lanczos bidiagonalization, BIT Numer. Math., 39, 603-619 (1999) · Zbl 0945.65044 · doi:10.1023/A:1022383005969
[5] Chung,J., Gazzola,S.: Computational methods for large-scale inverse problems: a survey on hybrid projection methods. arXiv preprint arXiv:2105.07221 (2021)
[6] Chung, J., Nagy, J.G., O’leary, D.P. et al.: A weighted GCV method for Lanczos hybrid regularization. Electron. Trans. Numer. Anal. 28, 149-167 (2008) · Zbl 1171.65029
[7] Cichocki, A.; Zdunek, R.; Phan, AH; Amari, S., Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation (2009), New York: Wiley, New York · doi:10.1002/9780470747278
[8] Comon, P.; Luciani, X.; DeAlmeida, AL, Tensor decompositions, alternating least squares and other tales, J. Chemom. A J. Chemometr. Soc., 23, 393-405 (2009)
[9] ElGuide, M.; Ichi, A.; Jbilou, K.; Sadaka, R., On tensor GMRES and Golub-Kahan methods via the T-product for color image processing, Electron. J. Linear Algebra, 37, 524-543 (2021) · Zbl 1538.65066 · doi:10.13001/ela.2021.5471
[10] Engl, H.W.: Regularization Methods for The Stable Solution of Inverse Problems. Univ., Institut für Mathematik (1992)
[11] Engl, HW; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (1996), New York: Springer, New York · Zbl 0859.65054 · doi:10.1007/978-94-009-1740-8
[12] Fenu, C.; Reichel, L.; Rodriguez, G.; Sadok, H., GCV for Tikhonov regularization by partial SVD, BIT Numer. Math., 57, 1019-1039 (2017) · Zbl 1386.65118 · doi:10.1007/s10543-017-0662-0
[13] Gazzola, S.; Novati, P.; Russo, MR, Embedded techniques for choosing the parameter in Tikhonov regularization, Numer. Linear Algebra Appl., 21, 796-812 (2014) · Zbl 1340.65068 · doi:10.1002/nla.1934
[14] Golub, G.H., Von Matt, U.: Tikhonov Regularization for Large Scale Problems. Citeseer (1997) · Zbl 0927.65058
[15] Golub, GH; Heath, M.; Wahba, G., Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21, 215-223 (1979) · Zbl 0461.62059 · doi:10.1080/00401706.1979.10489751
[16] Hanke, M.; Hansen, PC, Regularization methods for large-scale problems, Surv. Math. Ind., 3, 253-315 (1993) · Zbl 0805.65058
[17] Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006) · Zbl 1112.68127
[18] Harshman, R.A. et al.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. In: UCLA Working Papers in Phonetics, vol. 16, pp. 1-84 (1970)
[19] Jbilou, K.; Messaoudi, A.; Sadok, H., Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math., 31, 49-63 (1999) · Zbl 0935.65024 · doi:10.1016/S0168-9274(98)00094-4
[20] Kamm, J.; Nagy, JG, Kronecker product and SVD approximations in image restoration, Linear Algebra Appl., 284, 177-192 (1998) · Zbl 0936.65052 · doi:10.1016/S0024-3795(98)10024-1
[21] Kiers, HA, Towards a standardized notation and terminology in multiway analysis, J. Chemom. A J. Chemom. Soc., 14, 105-122 (2000)
[22] Kolda, TG; Bader, BW, Tensor decompositions and applications, SIAM Rev., 51, 455-500 (2009) · Zbl 1173.65029 · doi:10.1137/07070111X
[23] Kruskal, J.B.: Rank, decomposition, and uniqueness for 3-way and n-way arrays. In: Multiway Data Analysis, pp. 7-18. Elsevier (1989)
[24] Liu, S.; Trenkler, G., Hadamard, Khatri-Rao, Kronecker and other matrix products, Int. J. Inf. Syst. Sci., 4, 160-177 (2008) · Zbl 1159.15008
[25] Nagy, JG; Kilmer, ME, Kronecker product approximation for preconditioning in three-dimensional imaging applications, IEEE Trans. Image Process., 15, 604-613 (2006) · doi:10.1109/TIP.2005.863112
[26] Nagy, JG; Ng, MK; Perrone, L., Kronecker product approximations for image restoration with reflexive boundary conditions, SIAM J. Matrix Anal. Appl., 25, 829-841 (2003) · Zbl 1068.65055 · doi:10.1137/S0895479802419580
[27] Oseledets, IV, Tensor-train decomposition, SIAM J. Sci. Comput., 33, 2295-2317 (2011) · Zbl 1232.15018 · doi:10.1137/090752286
[28] Paige, CC; Saunders, MA, Algorithm 583: LSQR: sparse linear equations and least squares problems, ACM Trans. Math. Softw (TOMS), 8, 195-209 (1982) · doi:10.1145/355993.356000
[29] Paige, CC; Saunders, MA, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw. (TOMS), 8, 43-71 (1982) · Zbl 0478.65016 · doi:10.1145/355984.355989
[30] Peng, Z-Y, A matrix LSQR iterative method to solve matrix equation AXB= C, Int. J. Comput. Math., 87, 1820-1830 (2010) · Zbl 1195.65056 · doi:10.1080/00207160802516875
[31] Toutounian, F.; Karimi, S., Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides, Appl. Math. Comput., 178, 452-460 (2006) · Zbl 1100.65039
[32] VanLoan, CF, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123, 85-100 (2000) · Zbl 0966.65039 · doi:10.1016/S0377-0427(00)00393-9
[33] Van Loan, C.F., Pitsianis, N.: Approximation with Kronecker products. In: Linear Algebra for Large Scale and Real-Time Applications, pp. 293-314. Springer (1993) · Zbl 0813.65078
[34] Wen, Y-W; Ng, MK; Huang, Y-M, Efficient total variation minimization methods for color image restoration, IEEE Trans. Image Process., 17, 2081-2088 (2008) · Zbl 1371.94406 · doi:10.1109/TIP.2008.2003406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.