×

Approximate Bayesian computation with composite score functions. (English) Zbl 1505.62348

Summary: Both approximate Bayesian computation (ABC) and composite likelihood methods are useful for Bayesian and frequentist inference, respectively, when the likelihood function is intractable. We propose to use composite likelihood score functions as summary statistics in ABC in order to obtain accurate approximations to the posterior distribution. This is motivated by the use of the score function of the full likelihood, and extended to general unbiased estimating functions in complex models. Moreover, we show that if the composite score is suitably standardised, the resulting ABC procedure is invariant to reparameterisations and automatically adjusts the curvature of the composite likelihood, and of the corresponding posterior distribution. The method is illustrated through examples with simulated data, and an application to modelling of spatial extreme rainfall data is discussed.

MSC:

62-08 Computational methods for problems pertaining to statistics
62F15 Bayesian inference
62P12 Applications of statistics to environmental and related topics

Software:

SpatialExtremes

References:

[1] Barthelmé, S., Chopin, N.: Expectation propagation for likelihood-free inference. J. Am. Stat. Assoc. 109, 315-333 (2014) · Zbl 1367.62063 · doi:10.1080/01621459.2013.864178
[2] Beaumont, M.A.: Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41, 379-406 (2010) · doi:10.1146/annurev-ecolsys-102209-144621
[3] Beaumont, M.A., Cornuet, J.-M., Marin, J.-M., Robert, C.P.: Adaptive approximate Bayesian computation. Biometrika 96, 983-990 (2009) · Zbl 1437.62393 · doi:10.1093/biomet/asp052
[4] Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025-2035 (2002)
[5] Blanchet, J., Davison, A.C.: Spatial modeling of extreme snow depth. Ann. Appl. Stat. 5, 1699-1725 (2011) · Zbl 1228.62154 · doi:10.1214/11-AOAS464
[6] Blum, M.G.B.: Approximate Bayesian computation: a nonparametric perspective. J. Am. Stat. Assoc. 105, 1178-1187 (2010) · Zbl 1390.62052 · doi:10.1198/jasa.2010.tm09448
[7] Brazzale, A.R., Davison, A.C., Reid, N.: Applied Asymptotics: Case Studies in Small-Sample Statistics. Cambridge University Press, Cambridge (2007) · Zbl 1152.62077 · doi:10.1017/CBO9780511611131
[8] Buishand, T., de Haan, L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Stat. 27, 624-642 (2008) · Zbl 1273.62258 · doi:10.1214/08-AOAS159
[9] Cattelan, M., Sartori, N.: Empirical and simulated adjustments of composite likelihood ratio statistics. Technical Report (2014). arXiv:1403.7093v1 · Zbl 1510.62023
[10] Chib, S., Greenberg, E.: Analysis of multivariate probit models. Biometrika 85, 347-361 (1998) · Zbl 0938.62020 · doi:10.1093/biomet/85.2.347
[11] Cox, D.R., Reid, N.: A note on pseudolikelihood constructed from marginal densities. Biometrika 91, 729-737 (2004) · Zbl 1162.62365 · doi:10.1093/biomet/91.3.729
[12] Davison, A.C., Gholamrezaee, M.M.: Geostatistics of extremes. Proc. R. Soc. A 468, 581-608 (2012) · Zbl 1364.86020 · doi:10.1098/rspa.2011.0412
[13] Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27, 161-186 (2012) · Zbl 1330.86021 · doi:10.1214/11-STS376
[14] De Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12, 1194-1204 (1984) · Zbl 0597.60050 · doi:10.1214/aop/1176993148
[15] Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22, 1009-1020 (2012) · Zbl 1252.65025 · doi:10.1007/s11222-011-9271-y
[16] Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67, 225-233 (2011) · Zbl 1217.62128 · doi:10.1111/j.1541-0420.2010.01410.x
[17] Drovandi, C.C., Pettitt, A.N., Faddy, M.J.: Approximate Bayesian computation using indirect inference. J. R. Stat. Soc. Ser. C 60, 317-337 (2011) · doi:10.1111/j.1467-9876.2010.00747.x
[18] Drovandi, C. C., Pettitt, A. N., Lee, A.: Bayesian indirect inference using a parametric auxiliary model. Stat. Sci., to appear (2014) · Zbl 1332.62088
[19] Erhardt, R.J., Smith, R.L.: Approximate Bayesian computing for spatial extremes. Comput. Stat. Data Anal. 56, 1468-1481 (2012) · Zbl 1246.65023 · doi:10.1016/j.csda.2011.12.003
[20] Fearnhead, P., Prangle, D.: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation (with Discussion). J. R. Stat. Soc. B 74, 419-474 (2012) · Zbl 1411.62057 · doi:10.1111/j.1467-9868.2011.01010.x
[21] Fraser, D.A.S., Reid, N.: Ancillaries and third order significance. Util. Math. 47, 33-53 (1995) · Zbl 0829.62006
[22] Genton, M.G., Ma, Y., Sang, H.: On the likelihood function of Gaussian max-stable processes. Biometrika 98, 481-488 (2011) · Zbl 1215.62089 · doi:10.1093/biomet/asr020
[23] Gleim, A., Pigorsch, C.: Approximate Bayesian computation with indirect summary statistics. University of Bonn, Technical report (2013)
[24] Gourieroux, C., Monfort, A., Renault, E.: Indirect inference. J. Appl. Econ. 8, S85-S118 (1993) · Zbl 1448.62202 · doi:10.1002/jae.3950080507
[25] Heggland, K., Frigessi, A.: Estimating functions in indirect inference. J. R. Stat. Soc. B 66, 447-462 (2004) · Zbl 1062.62098 · doi:10.1111/j.1369-7412.2003.05341.x
[26] Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley, Hoboken (2009) · Zbl 1276.62022 · doi:10.1002/9780470434697
[27] Huser, R., Davison, A.C.: Composite likelihood estimation for the Brown-Resnick process. Biometrika 100, 511-518 (2013) · Zbl 1452.62702 · doi:10.1093/biomet/ass089
[28] Jung, H., Marjoram, P.: Choice of summary statistic weights in approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 10, 1-23 (2011). Article 45 · Zbl 1296.92043
[29] Kabluchko, Z., Schlather, M., De Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37, 2042-2065 (2009) · Zbl 1208.60051 · doi:10.1214/09-AOP455
[30] Kenne Pagui, E.C., Salvan, A., Sartori, N.: Combined composite likelihood. Can. J. Stat. 42, 525-543 (2014) · Zbl 1307.62066 · doi:10.1002/cjs.11235
[31] Kenne Pagui, E.C., Salvan, A., Sartori, N.: On full efficiency of the maximum composite likelihood estimator. Stat. Probab. Lett. 97, 120-124 (2015) · Zbl 1325.62054 · doi:10.1016/j.spl.2014.11.003
[32] Larribe, F., Fearnhead, P.: On composite likelihoods in statistical genetics. Stat. Sin. 21, 43-69 (2011) · Zbl 1206.62171
[33] Le Cessie, S., van Houwelingen, J.C.: Logistic regression for correlated binary data. J. R. Stat. Soc. Ser. C 43, 95-108 (1994) · Zbl 0825.62509
[34] Lindsay, B.G.: Composite likelihood methods. Contemp. Math. 80, 220-239 (1988) · Zbl 0672.62069
[35] Lindsay, B.G., Yi, G.Y., Sun, J.: Issues and strategies in the selection of composite likelihoods. Stat. Sin. 21, 71-105 (2011) · Zbl 1400.62049
[36] Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22, 1167-1180 (2012) · Zbl 1252.62022 · doi:10.1007/s11222-011-9288-2
[37] Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 100, 15324-15328 (2003) · doi:10.1073/pnas.0306899100
[38] Mengersen, K.L., Pudlo, P., Robert, C.P.: Bayesian computation via empirical likelihood. Proc. Natl. Acad. Sci. 110, 1321-1326 (2013) · doi:10.1073/pnas.1208827110
[39] Molenberghs, G., Verbeke, G.: Models for Discrete Longitudinal Data. Springer, New York (2005) · Zbl 1093.62002
[40] Monahan, J.F.: Numerical Methods of Statistics, 2nd edn. Cambridge University Press, Cambridge (2011) · Zbl 1217.65022 · doi:10.1017/CBO9780511977176
[41] Pace, L., Salvan, A.: Principles of Statistical Inference. World Scientific, Singapore (1997) · Zbl 0911.62003
[42] Pace, L., Salvan, A., Sartori, N.: Adjusting composite likelihood ratio statistics. Stat. Sin. 21, 129-148 (2011) · Zbl 1206.62109
[43] Padoan, S.A., Ribatet, M., Sisson, S.A.: Likelihood-based inference for max-stable processes. J. Am. Stat. Assoc. 105, 263-277 (2010) · Zbl 1397.62172 · doi:10.1198/jasa.2009.tm08577
[44] Pauli, F., Racugno, W., Ventura, L.: Bayesian composite marginal likelihoods. Stat. Sin. 21, 149-164 (2011) · Zbl 1206.62039
[45] Reid, N.: Asymptotics and the theory of inference. Ann. Stat. 31, 1695-1731 (2003) · Zbl 1042.62022
[46] Ribatet, M., Cooley, D., Davison, A.C.: Bayesian inference from composite likelihoods, with an application to spatial extremes. Stat. Sin. 22, 813-845 (2012) · Zbl 1238.62031
[47] Ribatet, M., Singleton, R., R Core team: Spatialextremes: modelling spatial extremes. R package version 2.0-0 (2013) · Zbl 1062.62098
[48] Sang, H., Genton, M.G.: Tapered composite likelihood for spatial max-stable models. Spat. Stat. 8, 86-103 (2014) · doi:10.1016/j.spasta.2013.07.003
[49] Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33-44 (2002) · Zbl 1035.60054 · doi:10.1023/A:1020977924878
[50] Sisson, S., Fan, Y., Tanaka, M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104, 1760-1765 (2007) · Zbl 1160.65005 · doi:10.1073/pnas.0607208104
[51] Sisson, S., Fan, Y., Tanaka, M.: Sequential Monte Carlo without likelihoods: errata. Proc. Natl. Acad. Sci. USA 106, 16889 (2009)
[52] Smith, E.L., Stephenson, A.G.: An extended Gaussian max-stable process model for spatial extremes. J. Stat. Plan. Inference 139, 1266-1275 (2009) · Zbl 1153.62067 · doi:10.1016/j.jspi.2008.08.003
[53] Smith, R.L.: Max-stable processes and spatial extremes. Unpublished manuscript, University of North Carolina (1990)
[54] Varin, C., Reid, N., Firth, D.: An overview of composite likelihood methods. Stat. Sin. 21, 5-42 (2011) · Zbl 1534.62022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.