×

Some characterizations for Markov processes at first passage. (English) Zbl 1505.60071

Summary: Suppose \(X\) is a Markov process on the real line (or some interval). Do the distributions of its first passage times downwards (fptd) determine its law? In this paper we treat some special cases of this question. We prove that if the fptd process has the law of a subordinator, then necessarily \(X\) is a Lévy process with no negative jumps; specifying the law of the subordinator determines the law of \(X\) uniquely. We further show that, likewise, the classes of continuous-state branching processes and of self-similar processes without negative jumps are also respectively characterised by a certain structure of their fptd distributions; and each member of these classes separately is determined uniquely by the precise family of its fptd laws. The road to these results is paved by (i) the identification of Markov processes without negative jumps in terms of the nature of their fptd laws, and (ii) some general results concerning the identification of the fptd distributions for such processes.

MSC:

60J25 Continuous-time Markov processes on general state spaces
60G51 Processes with independent increments; Lévy processes
60J76 Jump processes on general state spaces

References:

[1] Abrahams, J. A Survey of Recent Progress on Level-Crossing Problems for Random Processes. In Blake, I. F. and Poor, H. V., editors, Communications and Networks: A Survey of Recent Advances, pp. 6-25. Springer New York (1986). ISBN 978-1-4612-4904-7. DOI: 10.1007/978-1-4612-4904-7_2. · doi:10.1007/978-1-4612-4904-7_2
[2] Arbib, M. A. Hitting and martingale characterizations of one-dimensional diffusions. Z. Wahrschein-lichkeitstheorie und Verw. Gebiete, 4, 232-247 (1965) (1965). MR192551. · Zbl 0202.47203
[3] Avram, F., Li, B., and Li, S. General drawdown of general tax model in a time-homogeneous Markov framework. J. Appl. Probab., 58 (4), 1131-1151 (2021). MR4342597. · Zbl 1475.60076
[4] Bertoin, J. Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996). ISBN 0-521-56243-0. MR1406564. · Zbl 0861.60003
[5] Blumenthal, R. M. and Getoor, R. K. Markov processes and potential theory. Pure and Applied Mathematics, Vol. 29. Academic Press, New York-London (1968). MR0264757. · Zbl 0169.49204
[6] Blumenthal, R. M., Getoor, R. K., and McKean, H. P., Jr. Markov processes with identical hitting distributions. Illinois J. Math., 6 (3), 402-420 (1962). MR142157. · Zbl 0133.40903
[7] Bondesson, L. A characterization of first passage time distributions for random walks. Stochastic Process. Appl., 39 (1), 81-88 (1991). MR1135086. · Zbl 0742.60066
[8] Chaumont, L. and Doney, R. On distributions determined by their upward, space-time Wiener-Hopf factor. J. Theoret. Probab., 33 (2), 1011-1033 (2020). MR4091570. · Zbl 1455.60031
[9] Dellacherie, C. and Meyer, P.-A. Probabilities and potential, volume 29 of North-Holland Mathemat-ics Studies. North-Holland Publishing Co., Amsterdam-New York (1978). ISBN 0-7204-0701-X. MR521810. · Zbl 0494.60001
[10] Duhalde, X., Foucart, C., and Ma, C. On the hitting times of continuous-state branching processes with immigration. Stochastic Process. Appl., 124 (12), 4182-4201 (2014). MR3264444. · Zbl 1323.60116
[11] Ethier, S. N. and Kurtz, T. G. Markov processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., Hoboken, New Jersey (2005). ISBN 978-0-471-76986-6; 0-471-76986-X. MR838085. · Zbl 1089.60005
[12] Ikeda, N. and Watanabe, S. Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, second edition (1989). ISBN 0-444-87378-3. MR1011252. · Zbl 0684.60040
[13] Kallenberg, O. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, second edition (2002). ISBN 0-387-95313-2. MR1876169. · Zbl 0996.60001
[14] Kuznetsov, A., Kyprianou, A. E., and Rivero, V. The theory of scale functions for spectrally negative Lévy processes. In Lévy matters II, volume 2061 of Lecture Notes in Math., pp. 97-186. Springer, Heidelberg (2012). MR3014147. · Zbl 1261.60047
[15] Kwaśnicki, M. Random walks are determined by their trace on the positive half-line. Ann. H. Lebesgue, 3, 1389-1397 (2020). MR4191394. · Zbl 1454.60059
[16] Kyprianou, A. E. Fluctuations of Lévy processes with applications. Introductory lectures. Univer-sitext. Springer, Heidelberg, second edition (2014). ISBN 978-3-642-37631-3; 978-3-642-37632-0. MR3155252. · Zbl 1384.60003
[17] Landriault, D., Li, B., and Zhang, H. A unified approach for drawdown (drawup) of time-homogeneous Markov processes. J. Appl. Probab., 54 (2), 603-626 (2017). MR3668486. · Zbl 1400.60044
[18] Li, P. S. and Zhou, X. Integral functionals for spectrally positive Lévy processes. J. Theoret. Probab. (2022). DOI: 10.1007/s10959-022-01176-y. · Zbl 1537.60056 · doi:10.1007/s10959-022-01176-y
[19] Nobile, A. G., Ricciardi, L. M., and Sacerdote, L. A note on first-passage time and some related problems. J. Appl. Probab., 22 (2), 346-359 (1985). MR789358. · Zbl 0571.60083
[20] Parthasarathy, K. R. Probability measures on metric spaces. Probability and Mathematical Statis-tics, No. 3. Academic Press, Inc., New York-London (1967). MR0226684. · Zbl 0153.19101
[21] Patie, P. Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat., 45 (3), 667-684 (2009). MR2548498. · Zbl 1180.31010
[22] Redner, S. A guide to first-passage processes. Cambridge University Press, Cambridge (2001). ISBN 0-521-65248-0. MR1851867. · Zbl 0980.60006
[23] Revuz, D. and Yor, M. Continuous martingales and Brownian motion, volume 293 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, third edition (1999). ISBN 3-540-64325-7. MR1725357. · Zbl 0917.60006
[24] Schilling, R. L., Song, R., and Vondraček, Z. Bernstein functions. Theory and applications, vol-ume 37 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, second edition (2012). ISBN 978-3-11-025229-3; 978-3-11-026933-8. MR2978140. · Zbl 1257.33001
[25] Vidmar, M. First passage upwards for state-dependent-killed spectrally negative Lévy processes. J. Appl. Probab., 56 (2), 472-495 (2019). MR3986947. · Zbl 1415.60050
[26] Vidmar, M. Continuous-state branching processes with spectrally positive migration (2022+). To appear in Probab. Math. Stat., DOI: 10.37190/0208-4147.00044. · Zbl 1505.60083 · doi:10.37190/0208-4147.00044
[27] Vidmar, M. Exit problems for positive self-similar Markov processes with one-sided jumps. In Séminaire de Probabilités LI, volume 2301 of Lecture Notes in Math., pp. 91-115. Springer, Cham (2022a). MR4461023. · Zbl 1498.60176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.