×

Subdiffusive search with home returns via stochastic resetting: a subordination scheme approach. (English) Zbl 1505.60050

Summary: Stochastic resetting with home returns is widely found in various manifestations in life and nature. Using the solution to the home return problem in terms of the solution to the corresponding problem without home returns [A. Pal, Ł. Kuśmierz and S. Reuveni, “Search with home returns provides advantage under high uncertainty”, Phys. Rev. Res. 2, No. 4, Article ID 043174, 15 p. (2020; doi:10.1103/PhysRevResearch.2.043174)], we develop a theoretical framework for search with home returns in the case of subdiffusion. This makes a realistic description of restart by accounting for random walks with random stops. The model considers stochastic processes, arising from Brownian motion subordinated by an inverse infinitely divisible process (subordinator).

MSC:

60G50 Sums of independent random variables; random walks
60J65 Brownian motion
Full Text: DOI

References:

[1] Shkilev, V. P., Continuous-time random walk under time-dependent resetting, Phys. Rev. E, 96 (2017) · doi:10.1103/physreve.96.012126
[2] Chechkin, A.; Sokolov, I. M., Random search with resetting: a unified renewal approach, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.050601
[3] Kuśmierz, Ł.; Gudowska-Nowak, E., Subdiffusive continuous-time random walks with stochastic resetting, Phys. Rev. E, 99 (2019) · doi:10.1103/PhysRevE.99.052116
[4] Christou, C.; Schadschneider, A., Diffusion with resetting in bounded domains, J. Phys. A: Math. Theor., 48 (2015) · Zbl 1325.60127 · doi:10.1088/1751-8113/48/28/285003
[5] Chatterjee, A.; Christou, C.; Schadschneider, A., Diffusion with resetting inside a circle, Phys. Rev. E, 97 (2018) · doi:10.1103/physreve.97.062106
[6] Pal, A.; Prasad, V. V., First passage under stochastic resetting in an interval, Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.032123
[7] Pal, A.; Chatterjee, R.; Reuveni, S.; Kundu, A., Local time of diffusion with stochastic resetting, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.60151 · doi:10.1088/1751-8121/ab2069
[8] Pal, A.; Kuśmierz, L.; Reuveni, S., Invariants of motion with stochastic resetting and space-time coupled returns, New J. Phys., 21 (2019) · doi:10.1088/1367-2630/ab5201
[9] Pal, A., Diffusion in a potential landscape with stochastic resetting, Phys. Rev. E, 91 (2015) · doi:10.1103/physreve.91.012113
[10] Ray, S.; Mondal, D.; Reuveni, S., Péclet number governs transition to acceleratory restart in drift-diffusion, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.82046 · doi:10.1088/1751-8121/ab1fcc
[11] Ray, S.; Reuveni, S., Diffusion with resetting in a logarithmic potential, J. Chem. Phys., 152 (2020) · doi:10.1063/5.0010549
[12] Evans, M. R.; Majumdar, S. N., Diffusion with resetting in arbitrary spatial dimension, J. Phys. A: Math. Theor., 47 (2014) · Zbl 1303.60069 · doi:10.1088/1751-8113/47/28/285001
[13] Gupta, S.; Majumdar, S. N.; Schehr, G., Fluctuating interfaces subject to stochastic resetting, Phys. Rev. Lett., 112 (2014) · doi:10.1103/physrevlett.112.220601
[14] Falcao, R.; Evans, M. R., Interacting Brownian motion with resetting, J. Stat. Mech. (2017) · Zbl 1457.82248 · doi:10.1088/1742-5468/aa569c
[15] Evans, M. R.; Majumdar, S. N.; Mallick, K., Optimal diffusive search: nonequilibrium resetting versus equilibrium dynamics, J. Phys. A: Math. Theor., 46 (2013) · Zbl 1267.82098 · doi:10.1088/1751-8113/46/18/185001
[16] Reuveni, S.; Urbakh, M.; Klafter, J., Role of substrate unbinding in Michaelis-Menten enzymatic reactions, Proc. Natl Acad. Sci. USA, 111, 4391-4396 (2014) · doi:10.1073/pnas.1318122111
[17] Robin, T.; Reuveni, S.; Urbakh, M., Single-molecule theory of enzymatic inhibition, Nat. Commun., 9, 779 (2018) · doi:10.1038/s41467-018-02995-6
[18] Roldán, É.; Lisica, A.; Sánchez-Taltavull, D.; Grill, S. W., Stochastic resetting in backtrack recovery by RNA polymerases, Phys. Rev. E, 93 (2016) · doi:10.1103/physreve.93.062411
[19] Evans, M. R.; Majumdar, S. N.; Schehr, G., Stochastic resetting and applications, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1514.82157 · doi:10.1088/1751-8121/ab7cfe
[20] Palyulin, V. V.; Chechkin, A. V.; Metzler, R., Lévy flights do not always optimize random blind search for sparse targets, Proc. Natl Acad. Sci. USA, 111, 2931-2936 (2014) · doi:10.1073/pnas.1320424111
[21] Pal, A.; Kundu, A.; Evans, M. R., Diffusion under time-dependent resetting, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1345.60090 · doi:10.1088/1751-8113/49/22/225001
[22] Bhat, U.; De Basso, C.; Redner, S., Stochastic search with Poisson and deterministic resetting, J. Stat. Mech. (2016) · Zbl 1456.60235 · doi:10.1088/1742-5468/2016/08/083401
[23] Pal, A.; Kuśmierz, Ł.; Reuveni, S., Search with home returns provides advantage under high uncertainty, Phys. Rev. Res., 2 (2020) · doi:10.1103/physrevresearch.2.043174
[24] Meyer, H.; Rieger, H., Optimal non-Markovian search strategies with n-step memory, Phys. Rev. Lett., 127 (2021) · doi:10.1103/physrevlett.127.070601
[25] Redner, S., A Guide to First-Passage Processes (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1128.60002
[26] Bochner, S., Diffusion equation and stochastic processes, Proc. Natl Acad. Sci., 35, 368-370 (1949) · Zbl 0033.06803 · doi:10.1073/pnas.35.7.368
[27] Meerschaert, M. M.; Benson, D. A.; Scheffler, H. P.; Baeumer, B., Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65 (2002) · Zbl 1244.60080 · doi:10.1103/physreve.65.041103
[28] Magdziarz, M.; Weron, A., Competition between subdiffusion and Lévy flights: a Monte Carlo approach, Phys. Rev. E, 75 (2007) · Zbl 1123.60045 · doi:10.1103/physreve.75.056702
[29] Klafter, J.; Shlesinger, M. F.; Zumofen, G., Beyond Brownian motion, Phys. Today, 49, 33-39 (1996) · doi:10.1063/1.881487
[30] Sungkaworn, T.; Jobin, M-L; Burnecki, K.; Weron, A.; Lohse, M. J.; Calebiro, D., Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots, Nature, 550, 543-547 (2017) · doi:10.1038/nature24264
[31] Sabri, A.; Xu, X.; Krapf, D.; Weiss, M., Elucidating the origin of heterogeneous anomalous diffusion in the cytoplasm of mammalian cells, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.058101
[32] Stanislavsky, A.; Weron, A., Confined random motion with Laplace and Linnik statistics, J. Phys. A: Math. Theor., 54 (2021) · Zbl 1519.60122 · doi:10.1088/1751-8121/abd786
[33] Cartea, A.; del-Castillo-Negrete, D., Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007) · doi:10.1103/physreve.76.041105
[34] Barthelemy, P.; Bertolotti, J.; Wiersma, D. S., A Lévy flight for light, Nature, 453, 495-498 (2008) · doi:10.1038/nature06948
[35] Cont, R.; Tankov, P., Financial Modelling with Jump Processes (2003), London: Chapman and Hall, London
[36] Stanislavsky, A.; Burnecki, K.; Magdziarz, M.; Weron, A.; Weron, K., FARIMA modeling of solar flare activity from empirical time series of soft x-ray solar emission, Astrophys. J., 693, 1877-1882 (2009) · doi:10.1088/0004-637x/693/2/1877
[37] Stanislavsky, A.; Weron, K.; Weron, A., Anomalous diffusion with transient subordinators: a link to compound relaxation laws, J. Chem. Phys., 140 (2014) · doi:10.1063/1.4863995
[38] Monroe, I., Processes that can be embedded in Brownian motion, Ann. Probab., 6, 42-56 (1978) · Zbl 0392.60057 · doi:10.1214/aop/1176995609
[39] Weron, A.; Magdziarz, M., Anomalous diffusion and semimartingales, Europhys. Lett., 86 (2009) · doi:10.1209/0295-5075/86/60010
[40] Chechkin, A. V.; Sokolov, I. M., Relation between generalized diffusion equations and subordination schemes it, Phys. Rev. E, 103 (2021) · doi:10.1103/physreve.103.032133
[41] Blumen, A.; Klafter, J.; White, B. S.; Zumofen, G., Continuous-time random walks on fractals, Phys. Rev. Lett., 53, 1301 (1984) · doi:10.1103/physrevlett.53.1301
[42] Fogedby, H. C., Langevin equation for continuous time Levy flights, Phys. Rev. E, 50, 1657-1660 (1994) · doi:10.1103/physreve.50.1657
[43] Eule, S.; Friedrich, R., Subordinated Langevin equations for anomalous diffusion in external potentials—biasing and decoupled external forces, Europhys. Lett., 86 (2009) · doi:10.1209/0295-5075/86/30008
[44] Sokolov, I. M.; Klafter, J., From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion, Chaos, 15 (2005) · Zbl 1080.82022 · doi:10.1063/1.1860472
[45] Cambanis, S.; Podgórski, K.; Weron, A., Chaotic properties of infinitely divisible processes, Stud. Math., 115, 109-127 (1995) · Zbl 0835.60008
[46] Stanislavsky, A. A.; Weron, A., Accelerating and retarding anomalous diffusion: a Bernstein function approach, Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.052119
[47] Schilling, R. L.; Song, R.; Vondraček, Z., Bernstein Functions: Theory and Applications (2010), Berlin: de Gruyter & Co, Berlin · Zbl 1197.33002
[48] Feller, W., Introduction to Probability Theory and its Application, vol 2 (1967), New York: Wiley, New York · Zbl 0158.34902
[49] Stanislavsky, A. A.; Weron, A., Optimal non-Gaussian search with stochastic resetting, Phys. Rev. E, 104 (2021) · doi:10.1103/physreve.104.014125
[50] Kotz, S.; Kozubowski, T.; Podgórski, K., The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance (2001), Boston, MA: Birkhäuser, Boston, MA · Zbl 0977.62003
[51] Baeumer, B.; Meerschaert, M. J., Tempered stable Lévy motion and transient superdiffusion, Comput. Appl. Math., 233, 2438-2448 (2010) · Zbl 1423.60079 · doi:10.1016/j.cam.2009.10.027
[52] Leonenko, N. N.; Meerschaert, M. M.; Schilling, R. L.; Sikorskii, A., Correlation structure of time-changed Lévy processes, Commun. Appl. Ind. Math., 6 (2014) · Zbl 1329.60118 · doi:10.1685/journal.caim.483
[53] Imai, J.; Kawai, R., On finite truncation of infinite shot noise series representation of tempered stable laws, Physica A, 390, 4411-4425 (2011) · doi:10.1016/j.physa.2011.07.028
[54] Kawai, R., Higher order fractional stable motion: hyperdiffusion with heavy tails, J. Stat. Phys., 165, 126-152 (2016) · Zbl 1355.60050 · doi:10.1007/s10955-016-1602-0
[55] Lanoiselée, Y.; Grebenkov, D. S., Non-Gaussian diffusion of mixed origins, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.60149 · doi:10.1088/1751-8121/ab2826
[56] Stanislavsky, A. A.; Weron, K.; Weron, A., Diffusion and relaxation controlled by tempered α-stable processes, Phys. Rev. E, 78 (2008) · doi:10.1103/physreve.78.051106
[57] Sandev, T.; Deng, W.; Xu, P., Generalized diffusion-wave equation with memory kernel, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1475.60151 · doi:10.1088/1751-8121/aad8c9
[58] Stanislavsky, A.; Weron, A., Transient anomalous diffusion with Prabhakar-type memory, J. Chem. Phys., 149 (2018) · doi:10.1063/1.5042075
[59] Caputo, M., Linear models of dissipation whose Q is almost frequency independent—II, Geophys. J. R. Astron. Soc., 13, 529-539 (1967) · doi:10.1111/j.1365-246x.1967.tb02303.x
[60] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66 (2002) · doi:10.1103/physreve.66.046129
[61] Chechkin, A. V.; Gonchar, V. Y.; Gorenflo, R.; Korabel, N.; Sokolov, I. M., Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights, Phys. Rev. E, 78 (2008) · doi:10.1103/physreve.78.021111
[62] Sandev, T.; Chechkin, A. V.; Korabel, N.; Kantz, H.; Sokolov, I. M.; Metzler, R., Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 92 (2015) · doi:10.1103/physreve.92.042117
[63] Eab, C. H.; Lim, S. C., Accelerating and retarding anomalous diffusion, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1237.35166 · doi:10.1088/1751-8113/45/14/145001
[64] Orzeł, S.; Mydlarczyk, W.; Jurlewicz, A., Accelerating subdiffusions governed by multiple-order time-fractional diffusion equations: stochastic representation by a subordinated Brownian motion and computer simulations, Phys. Rev. E, 87 (2013) · doi:10.1103/PhysRevE.87.032110
[65] Stanislavsky, A.; Weron, A., Control of the transient subdiffusion exponent at short and long times, Phys. Rev. Res., 1 (2019) · doi:10.1103/physrevresearch.1.023006
[66] Stanislavsky, A. A.; Weron, K.; Weron, A., Anomalous diffusion approach to non-exponential relaxation in complex physical systems, Commun. Nonlinear Sci. Numer. Simul., 24, 117-126 (2015) · Zbl 1463.82002 · doi:10.1016/j.cnsns.2015.01.001
[67] Stanislavsky, A. A.; Weron, K., Stochastic tools hidden behind the empirical dielectric relaxation laws, Rep. Prog. Phys., 80 (2017) · doi:10.1088/1361-6633/aa5283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.