×

The correlated dichotomous noise as an exact \(M\)-Gaussian stochastic process. (English) Zbl 1505.60044


MSC:

60G15 Gaussian processes
60F05 Central limit and other weak theorems
35Q84 Fokker-Planck equations
Full Text: DOI

References:

[1] Darling, D. A., Review: B. V. Gnedenko and A. N. Kolmogorov, limit distributions for sums of independent random variables, Bull. Am. Math. Soc., 62, 1, 50-52 (1956)
[2] Khinchin, A. Y., Mathematical foundations of statistical mechanics (1949), Dover Publications · Zbl 0037.41102
[3] Gardiner, C., Stochastic Methods. A Handbook for the Natural and Social Sciences, Vol. 13 of Springer Series in Synergetics (2009), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1181.60001
[4] Lévy, P., Théorie de l’Additions des Variables Aléatoires (1954), Gauthier Villars · Zbl 0056.35903
[5] Bianucci, M., Operators central limit theorem, Chaos Solitons Fractals, 148, Article 110961 pp. (2021) · Zbl 1485.60022
[6] Bianucci, M.; Bologna, M., About the foundation of the kubo generalized cumulants theory: a revisited and corrected approach, Journal of Statistical Mechanics: Theory and Experiment, 4, 2020, Article 043405 pp. (2020), URL doi:10.1088 · Zbl 1456.60047
[7] Fox, R. F., Critique of the generalized cumulant expansion method, Journal of Mathematical Physics, 17, 7, 1148-1153 (1976), arXiv:doi:10.1063/1.523041, doi:10.1063/1.523041
[8] Fox, R. F., Time ordered operator cumulants: statistical independence and noncommutativity, J Math Physics, 20, 12, 2467-2470 (1979), arXiv:doi:10.1063/1.524055 · Zbl 0438.60008
[9] Kubo, R., Generalized cumulant expansion method, Journal of the Physical Society of Japan, 17, 7, 1100-1120 (1962), arXiv:doi:10.1143/JPSJ.17.1100 · Zbl 0118.45203
[10] Valani, R. N.; Slim, A. C.; Paganin, D. M.; Simula, T. P.; Vo, T., Unsteady dynamics of a classical particle-wave entity, Phys. Rev. E, 104, Article 015106 pp. (2021)
[11] Potoyan, D. A.; Wolynes, P. G., Dichotomous noise models of gene switches, J Chem. Physics, 143, 19 (2015), 26590554[pmid]
[12] Lorenz, E. N., Deterministic non-periodic flow, J Atmos Sci, 20, 130-141 (1963) · Zbl 1417.37129
[13] Mittal, A. K.; Dwivedi, S.; Pandey, A. C., A study of the forced lorenz model of relevance to monsoon predictability, Indian J. Radio Space Phys., 32, 4, 209-216 (2003)
[14] Pal, P. K.; Shah, S., Feasibility study of extended range atmospheric prediction through time average lorenz attractor, Indian J. Radio Space Phys., 28, 271-276 (1999)
[15] Palmer, T. N., Extended-range atmospheric prediction and the Lorenz model, Bull. Am. Meteorol. Soc., 74, 49-66 (1999)
[16] Tsonis, A. A., Chaos: From Theory to Applications (1992), Plenum Press: Plenum Press New York, London
[17] Yorke, J. A.; Yorke, E. D., Metastable chaos: the transition to sustained chaotic behavior in the lorenz model, J Stat Phys, 21, 3, 263-277 (1979), URL doi:10.1007/BF01011469
[18] Bena, I., Dichotomous markov noise: Exact results for out-of-equilibrium systems, Int. J. Modern Phys. B, 20, 20, 2825-2888 (2006), arXiv:doi:10.1142/S0217979206034881, doi:10.1142/S0217979206034881 · Zbl 1107.82357
[19] Mori, H., A continued-fraction representation of the time-correlation functions, Progress of Theoretical Physics, 34, 3, 399-416 (1965)
[20] (Zwanzig, R., Nonequilibrium Statistical Mechanics (2001), Oxford University Press), http://ukcatalogue.oup.com/product/9780195140187.do · Zbl 1267.82001
[21] Grigolini, P., The projection approach to the Fokker-Planck equation: applications to phenomenological stochastic equations with colored noises, (Moss, F.; McClintock, P. V.E., Noise in Nonlinear Dynamical Systems, 1 (1989), Cambridge University Press: Cambridge University Press Cambridge, England), 161, Ch. 5
[22] Chorin, A. J.; Hald, O. H.; Kupferman, R., Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proceedings of the National Academy of Sciences, 97, 7, 2968-2973 (2000), arXiv:http://www.pnas.org/content/97/7/2968.full.pdf · Zbl 0968.60036
[23] Ruelle, D., A review of linear response theory for general differentiable dynamical systems, Nonlinearity, 22, 4, 855-870 (2009), URL doi:10.1088/0951-7715/22/4/009 · Zbl 1158.37305
[24] Wouters, J.; Lucarini, V., Multi-level dynamical systems: connecting the ruelle response theory and the mori-zwanzig approach, J Stat Phys, 151, 5, 850-860 (2013), URL doi:10.1007/s10955-013-0726-8 · Zbl 1273.82028
[25] Yoon, B.; Deutch, J. M.; Freed, J. H., A comparison of generalized cumulant and projection operator methods in spin?relaxation theory, J Chem Phys 62(12), 62, 12, 4687-4696 (1975), arXiv:10.1063/1.430417
[26] Allegrini, P.; Grigolini, P.; Palatella, L.; West, B. J., Non-poisson dichotomous noise: Higher-order correlation functions and aging, Phys. Rev. E, 70, Article 046118 pp. (2004)
[27] Bologna, M.; Ascolani, G.; Grigolini, P., Density approach to ballistic anomalous diffusion: an exact analytical treatment, Journal of Mathematical Physics, 51, 4, Article 043303 pp. (2010), arXiv:doi:10.1063/1.3355199, doi:10.1063/1.3355199 · Zbl 1310.60112
[28] Hoeffding, W.; Robbins, H., The Central Limit Theorem for Dependent Random Variables, Springer Series in Statistics (Perspectives in Statistics) (1994), Springer · Zbl 0807.01034
[29] Bianucci, M.; Mannella, R., Optimal FPE for non-linear 1d-SDE. I: additive Gaussian colored noise, journal of physicsCommunications, 4, 10, Article 105019 pp. (2020), URL doi:10.1088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.