×

\(K\)-correspondences, USCOs, and fixed point problems arising in discounted stochastic games. (English) Zbl 1505.54030

Summary: We establish a fixed point theorem for the composition of nonconvex, measurable selection valued correspondences with Banach space valued selections. We show that if the underlying probability space of states is nonatomic and if the selection correspondences in the composition are \(K\)-correspondences (meaning correspondences having graphs that contain their Komlos limits), then the induced measurable selection valued composition correspondence takes contractible values and therefore has fixed points. As an application we use our fixed point result to show that all nonatomic uncountable-compact discounted stochastic games have stationary Markov perfect equilibria – thus resolving a long-standing open question in game theory.

MSC:

54C60 Set-valued maps in general topology
54H25 Fixed-point and coincidence theorems (topological aspects)
91A15 Stochastic games, stochastic differential games

References:

[1] Nowak, A. S.; Raghavan, T. E.S., Existence of stationary correlated equilibria with symmetric information for discounted stochastic games, Math. Oper. Res., 17, 3, 519-526 (1992) · Zbl 0761.90112 · doi:10.1287/moor.17.3.519
[2] Gorniewicz, L.; Granas, A.; Kryszewski, W., On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts, J. Math. Anal. Appl., 161, 2, 457-473 (1991) · Zbl 0757.54019 · doi:10.1016/0022-247X(91)90345-Z
[3] Blackwell, D., Discounted dynamic programming, Ann. Math. Stat., 36, 1, 226-235 (1965) · Zbl 0133.42805 · doi:10.1214/aoms/1177700285
[4] Levy, Y., A discounted stochastic game with no stationary Nash equilibrium: two examples, Econometrica, 81, 5, 1973-2007 (2013) · Zbl 1354.91016 · doi:10.3982/ECTA10530
[5] Levy, Y.; McLennan, A., Corrigendum to “Discounted stochastic games with no stationary Nash equilibrium: two examples”, Econometrica, 83, 3, 1237-1252 (2015) · Zbl 1406.91021 · doi:10.3982/ECTA12183
[6] Jaskiewicz, A.; Nowak, A. S., Nonzero-sum stochastic games, Handbook of Dynamic Game Theory, 281-344 (2018), Cham: Springer, Cham
[7] Jaskiewicz, A.; Nowak, A. S., Stationary almost Markov perfect equilibria in discounted stochastic games, Math. Oper. Res., 41, 2, 430-441 (2016) · Zbl 1382.91013 · doi:10.1287/moor.2015.0734
[8] Page, F.: A fixed point theorem for measurable selection valued correspondences arising in game theory. Discussion Paper 43, Systemic Risk Centre, London School of Economics and Political Science (2015)
[9] Page, F.: Stationary markov equilibria for approximable discounted stochastic games. Discussion Paper 60, Systemic Risk Centre, London School of Economics and Political Science (2016)
[10] Hildenbrand, W., Core and Equilibria of a Large Market (1974), Princeton: Princeton University Press, Princeton · Zbl 0351.90012
[11] Diestel, J.; Uhl, J. J. Jr., Vector Measures (1977), Providence: Am. Math. Soc., Providence · Zbl 0369.46039
[12] Balder, E. J., New sequential compactness results for spaces of scalarly integrable functions, J. Math. Anal. Appl., 151, 1, 1-16 (1990) · Zbl 0733.46015 · doi:10.1016/0022-247X(90)90237-A
[13] Kuratowski, K., Introduction to Set Theory and Topology (1972), Warszawa: Pergamon, Warszawa · Zbl 0305.04004
[14] Charatonik, J.; Charatonik, M., Dendrites, Aportaciones Mat. Comun., 22, 227-253 (1998) · Zbl 0967.54034
[15] van Mill, J., The Infinite-Dimensional Topology of Function Spaces (2002), Amsterdam: North-Holland, Amsterdam
[16] Borsuk, K., Sur les retractes, Fundam. Math., 17, 1, 152-170 (1931) · Zbl 0003.02701 · doi:10.4064/fm-17-1-152-170
[17] Illanes, A.; Nadler, S., Hyperspaces: Fundamentals and Recent Advances (1999), New York: Dekker, New York · Zbl 0933.54009
[18] Hola, L.; Holy, D., Minimal usco and minimal cusco maps, Khayyam J. Math., 1, 2, 125-150 (2015) · Zbl 1339.54016
[19] Fryszkowski, A., Continuous selections from a class of non-convex multivalued maps, Stud. Math., 76, 2, 163-174 (1983) · Zbl 0534.28003 · doi:10.4064/sm-76-2-163-174
[20] Liapounoff, A. A., Sur les fonctions-vecteurs completement additives, Izv. Akad. Nauk SSSR, Ser. Mat., 4, 6, 465-478 (1940) · JFM 66.0219.02
[21] Mariconda, C., Contractibility and fixed point property: the case of decomposable sets, Nonlinear Anal., Theory Methods Appl., 18, 7, 689-695 (1992) · Zbl 0796.54046 · doi:10.1016/0362-546X(92)90007-2
[22] Aliprantis, C. D.; Border, K. C., Infinite Dimensional Analysis: A Hitchhiker’s Guide (2006), Berlin: Springer, Berlin · Zbl 1156.46001
[23] Hiai, F.; Umegaki, H., Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal., 7, 1, 149-182 (1977) · Zbl 0368.60006 · doi:10.1016/0047-259X(77)90037-9
[24] Himmelberg, C. J., Measurable relations, Fundam. Math., 87, 1, 53-72 (1975) · Zbl 0296.28003 · doi:10.4064/fm-87-1-53-72
[25] Castaing, C.; Valadier, M., Convex Analysis and Measurable Multifunctions (1977), Berlin: Springer, Berlin · Zbl 0346.46038
[26] Balder, E. J., Lectures on young measure theory and its application in economics, Rend. Ist. Mat. Univ. Trieste, 31, 1-40 (1998)
[27] Bourgin, R., Geometric Aspects of Convex Sets with the Radon-Nikodym Property (1983), Berlin: Springer, Berlin · Zbl 0512.46017
[28] Cornet, B., Martins-da-Rocha, V.F.: Fatou’s lemma for unbounded gelfand integrable mappings. Working Paper Series in Theoretical and Applied Economics 200503, Department of Economics, University of Kansas (2005)
[29] Kahn, M. A., On extensions of the Cournot-Nash theorem, Advances in Equilibrium Theory, 79-106 (1985), Berlin: Springer, Berlin · Zbl 0563.90105
[30] De Blasi, F. S.; Myjak, J., On continuous approximations for multifunctions, Pac. J. Math., 123, 1, 9-31 (1986) · Zbl 0595.47037 · doi:10.2140/pjm.1986.123.9
[31] Cellina, A., Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl., 82, 17-24 (1969) · Zbl 0187.07701 · doi:10.1007/BF02410784
[32] Willard, S., General Topology (1970), Reading: Addison-Wesley, Reading · Zbl 0205.26601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.