×

Grothendieck enriched categories. (English) Zbl 1505.18013

An object \(E\) in a 2-category equipped with a Yoneda structure was defined [R. Street and R. Walters, J. Algebra 50, 350–379 (1978; Zbl 0401.18004)] to be totally cocomplete (abbreviated to “total”) when the Yoneda morphism \(y_E : E\to \mathcal{P}E\) had a left adjoint \(z_E\dashv y_E\). In particular this applies in the 2-category of categories with homs enriched in a nice (say locally finitely presentable) monoidal category \(\mathscr{V}\). When the morphisms in the 2-category are restricted to finite limit preserving \(\mathscr{V}\)-functors, we call a total object \(E\) lex total (“lex” for “left exact). When \(\mathscr{V} = \mathrm{Set}\) and \(E\) is not too big [R. Street, Bull. Aust. Math. Soc. 23, 199–208 (1981; Zbl 0471.18005)], \(E\) is lex total if and only if it is a Grothendieck topos. In the absence of such an existence theorem for a generating set for general \(\mathscr{V}\), it makes sense to define a \(\mathscr{V}\)-topos to be a lex-total \(\mathscr{V}\)-category with a small strongly generating set of objects; indeed, in [B. Day and R. Street, Contemp. Math. 431, 187–202 (2007; Zbl 1128.18004)] we also defined monoidal \(\mathscr{V}\)-topos. A feature of a Grothendieck topos is that any generating set of its objects is automatically dense (or “left adequate” in Isbell’s terminology); this is a key ingredient of the Giraud Theorem characterizing Grothendieck toposes as it is in the Gabriel-Popescu Theorem characterizing Grothendieck abelian categories. In [B. Day and R. Street, J. Pure Appl. Algebra 43, 235–242 (1986; Zbl 0612.18004)] we saw for general \(\mathscr{V}\) that this feature has to do with the left adjoint \(z_E\) preserving monomorphisms. When \(\mathscr{V}\) is the category \(\mathrm{Ab}\) of abelian groups (so that left adjoints preserving monomorphisms are automatically finite limit preserving and all epimorphisms are strong), a \(\mathscr{V}\)-topos is precisely a Grothendieck abelian category.
A Grothendieck \(\mathscr{V}\)-enriched category in the present paper is a \(\mathscr{V}\)-topos as above. When \(\mathscr{V}\) itself is a “Grothendieck cosmos” (which includes its being a Grothendieck abelian category), a Gabriel-Popescu-type theorem is proved. An important example is when \(\mathscr{V}\) is the category of chain complexes so that Grothendieck DG-categories are characterized. Preservation of Grothendieckness is proved under change of base by a monoidal right adjoint functor.

MSC:

18E10 Abelian categories, Grothendieck categories
18D20 Enriched categories (over closed or monoidal categories)

Software:

MathOverflow

References:

[1] Hwaeer, HA; Garkusha, G., Grothendieck categories of enriched functors, J. Algebra, 450, 204-241 (2016) · Zbl 1333.18014 · doi:10.1016/j.jalgebra.2015.09.052
[2] Bondal, AI; Kapranov, MM, Enhanced triangulated categories, Math. USSR, Sb., 70, 1, 93-107 (1991) · Zbl 0729.18008 · doi:10.1070/SM1991v070n01ABEH001253
[3] Borceux, F., Handbook of Categorical Algebra 1, Basic Category Theory, Encyclopedia of Mathematics and its Applications (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0803.18001
[4] Borceux, F., Handbook of Categorical Algebra 2, Categories and Structures, Encyclopedia of Mathematics and its Applications (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0843.18001 · doi:10.1017/CBO9780511525872
[5] Borceux, F., Handbook of Categorical Algebra 3, Categories of Sheaves, Encyclopedia of Mathematics and its Applications (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0911.18001 · doi:10.1017/CBO9780511525872
[6] Bourbaki, N.: Algebra I, Chapters 1-3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, (1989), Translated from the French, Reprint of the 1974 edition · Zbl 0673.00001
[7] Borceux, F.; Quinteiro, C., A theory of enriched sheaves, Cahiers Topologie Géom. Différentielle Catég., 37, 2, 145-162 (1996) · Zbl 0883.18006
[8] Borceux, F.; Quinteiro, C.; Rosický, J., A theory of enriched sketches, Theory Appl. Categ., 4, 3, 47-72 (1998) · Zbl 0981.18006
[9] Coulembier, K.: Additive Grothendieck pretopologies and presentations of tensor categories, arXiv:2011.02137 (2021)
[10] Coulembier, K.: Homological kernels of monoidal functors, arXiv:2107.02374 (2021)
[11] Di Liberti, I.: General theory of left-exact localization?, MathOverflow, URL: https://mathoverflow.net/q/349948 (version: 2021-06-11)
[12] Di Liberti, I.: Is there a good general definition of “sheaves with values in a category”?, MathOverflow, URL: https://mathoverflow.net/q/389388 (version: 2021-04-06)
[13] Dold, A.; Puppe, D., Duality, trace and transfer, Proc. Steklov Inst. Math., 154, 85-103 (1985) · Zbl 0556.55006
[14] Di Liberti, I., González, J.R.: Exponentiable Grothendieck categories in flat algebraic geometry, arXiv:2103.07876 (2021) · Zbl 1497.14004
[15] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs (2015), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1365.18001 · doi:10.1090/surv/205
[16] Enochs, EE; García Rozas, JR, Tensor products of complexes, Math. J. Okayama Univ., 39, 17-39 (1997) · Zbl 0940.18005
[17] Garkusha, G., Jones, D.: Derived categories for Grothendieck categories of enriched functors, arXiv:1803.09451, (2018) · Zbl 1423.13090
[18] Garner, R.; Lack, S., Lex colimits, J. Pure Appl. Algebra, 216, 6, 1372-1396 (2012) · Zbl 1256.18002 · doi:10.1016/j.jpaa.2012.01.003
[19] Holm, H., Odabasi, S.: The tensor embedding for a grothendieck cosmos, arXiv:1911.12717, (2019)
[20] Kelly, G.M.: Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge-New York, 1982, Reprints in Theory and Applications of Categories 10 (2005) · Zbl 0478.18005
[21] Kelly, G.M.: Structures defined by finite limits in the enriched context, I, Cahiers de Top. et Géom. Diff. 23 (1982), no. 1, 3-42, Third Colloquium on Categories, Part VI (Amiens, 1980) · Zbl 0538.18006
[22] Keller, B.: On differential graded categories, In: International Congress of Mathematicians, vol. II, pp. 151-190. Zürich, Eur. Math. Soc. (2006) · Zbl 1140.18008
[23] Kashiwara, M.; Schapira, P., Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften (2006), Berlin: Springer-Verlag, Berlin · Zbl 1118.18001
[24] Kuhn, NJ, Generic representations of the finite general linear groups and the Steenrod algebra. I, Am. J. Math., 116, 2, 327-360 (1994) · Zbl 0813.20049 · doi:10.2307/2374932
[25] Jr. Lewis, L.G., May, J.P., Steinberger, M.: Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, With contributions by J. E. McClure (1986) · Zbl 0611.55001
[26] Lowen, W., A generalization of the Gabriel-Popescu theorem, J. Pure Appl. Algebra, 190, 1-3, 197-211 (2004) · Zbl 1051.18007 · doi:10.1016/j.jpaa.2003.11.016
[27] Lowen, W., Linearized topologies and deformation theory, Topol. Appl., 200, 176-211 (2016) · Zbl 1342.18024 · doi:10.1016/j.topol.2015.12.019
[28] Lurie, J.: Higher Algebra https://www.math.ias.edu/ lurie/papers/HA.pdf, (2017)
[29] nLab authors, \(n\) Lab, https://ncatlab.org/nlab/show/HomePage, -(2021)
[30] Popesco, N.; Gabriel, P., Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C. R. Acad. Sci., Paris, 258, French, 4188-4190 (1964) · Zbl 0126.03304
[31] Porta, M., The Popescu-Gabriel theorem for triangulated categories, Adv. Math., 225, 3, 1669-1715 (2010) · Zbl 1227.18011 · doi:10.1016/j.aim.2010.04.002
[32] Prest, M., Ralph, A.: Locally finitely presented categories of sheaves of modules (2010)
[33] González, JR, Grothendieck categories as a bilocalization of linear sites, Appl. Categ. Struct., 26, 4, 717-745 (2018) · Zbl 1408.18025 · doi:10.1007/s10485-017-9511-1
[34] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, (2018)
[35] Stenström, B.: Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, An introduction to methods of ring theory (1975) · Zbl 0296.16001
[36] Street, R., Absolute colimits in enriched categories, Cahiers de Top. et Géom. Diff., 24, 4, 377-379 (1983) · Zbl 0532.18001
[37] Vitale, EM, Localizations of algebraic categories. II, J. Pure Appl. Algebra, 133, 3, 317-326 (1998) · Zbl 0939.18006 · doi:10.1016/S0022-4049(97)00122-9
[38] Šťovíček, J., Locally well generated homotopy categories of complexes, Doc. Math., 15, 507-525 (2010) · Zbl 1226.18015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.