×

Parametrization of quantum states based on the quantum state discrimination problem. (English) Zbl 1504.81007

Summary: A discrimination problem consists of \(N\) linearly independent pure quantum states \(\Phi =\{|\phi_i\rangle\}\) and the corresponding occurrence probabilities \(\eta = \{\eta_i\}\). With any such problem, we associate, up to a permutation over the probabilities \(\{\eta_i\}\), a unique pair of density matrices \(\boldsymbol{\rho_T}\) and \(\boldsymbol{\eta_p}\) defined on the \(N\)-dimensional Hilbert space \(\mathcal{H}_N\). The first one, \(\boldsymbol{\rho_T}\), provides a new parametrization of a generic full-rank density matrix in terms of the parameters of the discrimination problem, i.e., the mutual overlaps \(\gamma_{ij}=\langle\phi_i|\phi_j\rangle\) and the occurrence probabilities \(\{\eta_i\}\). The second one, on the other hand, is defined as a diagonal density matrix \(\boldsymbol{\eta_p}\) with the diagonal entries given by the probabilities \(\{\eta_i\}\) with the ordering induced by the permutation \(p\) of the probabilities. \( \boldsymbol{\rho_T}\) and \(\boldsymbol{\eta_p}\) capture information about the quantum and classical versions of the discrimination problem, respectively. In this sense, when the set \(\Phi\) can be discriminated unambiguously with probability one, i.e., when the states to be discriminated are mutually orthogonal and can be distinguished by a classical observer, then \(\boldsymbol{\rho_T}\rightarrow\boldsymbol{\eta_p}\). Moreover, if the set lacks its independency and cannot be discriminated anymore, the distinguishability of the pair, measured by the fidelity \(F(\boldsymbol{\rho_T}, \boldsymbol{\eta_p})\), becomes minimum. This enables one to associate with each discrimination problem a measure of discriminability defined by the fidelity \(F(\boldsymbol{\rho_T}, \boldsymbol{\eta_p})\). This quantity, though distinct from the maximum probability of success, has the advantage of being easy to calculate, and in this respect, it can find useful applications in estimating the extent to which the set is discriminable.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
81P18 Quantum state tomography, quantum state discrimination
81P47 Quantum channels, fidelity

References:

[1] Fano, U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74-93 (1957) · Zbl 0078.19506 · doi:10.1103/RevModPhys.29.74
[2] Boya, L.J., Byrd, M., Mims, M., Sudarshan, E.C.G.: Density matrices and geometric phases for \[n\] n-state systems. arXiv:quant-ph/9810084
[3] Byrd, M.S., Slater, P.: Bures measures over the spaces of two-and three-dimensional density matrices. Phys. Lett. A 283, 152-156 (2001) · Zbl 0984.81062 · doi:10.1016/S0375-9601(01)00221-3
[4] Tilma, T., Byrd, M., Sudarshan, E.C.G.: A parametrization of bipartite systems based on \[SU(4)\] SU(4) Euler angles. J. Phys. A: Math. Gen. 35, 10445-10465 (2002) · Zbl 1044.22010 · doi:10.1088/0305-4470/35/48/315
[5] Tilma, T., Sudarshan, E.C.G.: Generalized Euler angle parametrization for \[SU(N)\] SU(N). J. Phys. A: Math. Gen. 35, 10467-10501 (2002) · Zbl 1047.22012 · doi:10.1088/0305-4470/35/48/316
[6] Tilma, T., Sudarshan, E.C.G.: Generalized Euler angle parameterization for \[U(N)U(N)\] with applications to \[SU(N)\] SU(N) coset volume measures. J. Geom. Phys. 52, 263-283 (2004) · Zbl 1069.22012 · doi:10.1016/j.geomphys.2004.03.003
[7] Życzkowski, K., Słomczyński, W.: The Monge metric on the sphere and geometry of quantum states. J. Phys. A: Math. Gen. 34, 6689-6722 (2001) · Zbl 1012.81009 · doi:10.1088/0305-4470/34/34/311
[8] Diţă, P.: Finite-level systems, Hermitian operators, isometries and a novel parametrization of Stiefel and Grassmann manifolds. J. Phys. A: Math. Gen. 38, 2657-2668 (2005) · Zbl 1065.81024 · doi:10.1088/0305-4470/38/12/008
[9] Diţă, P.: Factorization of unitary matrices. J. Phys. A: Math. Gen. 36, 2781-2790 (2003) · Zbl 1057.15012 · doi:10.1088/0305-4470/36/11/309
[10] Akhtarshenas, S.J.: Canonical coset parametrization and the Bures metric of the three-level quantum systems. J. Math. Phys. 48, 012102 (2007) · Zbl 1121.81059 · doi:10.1063/1.2405401
[11] Akhtarshenas, S.J.: An explicit computation of the Bures metric over the space of \[NN\]-dimensional density matrices. J. Phys. A: Math. Theor. 40, 11333-11341 (2007) · Zbl 1122.81017 · doi:10.1088/1751-8113/40/37/010
[12] Ilin, N., Shpagina, E., Uskov, F., Lychkovskiy, O.: Squaring parametrization of constrained and unconstrained sets of quantum states. J. Phys. A: Math. Theor. 51, 085301 (2018) · Zbl 1386.81021 · doi:10.1088/1751-8121/aaa32d
[13] Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, New York (1982) · Zbl 0497.46053
[14] Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976) · Zbl 1332.81011
[15] Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145-195 (2002) · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[16] Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[17] Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899-6905 (2001) · Zbl 0988.81023 · doi:10.1088/0305-4470/34/35/315
[18] Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802-803 (1982) · Zbl 1369.81022 · doi:10.1038/299802a0
[19] Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844-1852 (1996) · doi:10.1103/PhysRevA.54.1844
[20] Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008) · doi:10.1103/PhysRevLett.100.090502
[21] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010) · Zbl 1288.81001 · doi:10.1017/CBO9780511976667
[22] Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1, 238-278 (2009) · doi:10.1364/AOP.1.000238
[23] Barnett, S.M., Croke, S.: On the conditions for discrimination between quantum states with minimum error. J. Phys. A: Math. Theor. 42, 062001 (2009) · Zbl 1156.81330 · doi:10.1088/1751-8113/42/6/062001
[24] Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36, 1269-1288 (1997) · Zbl 1053.81506 · doi:10.1007/BF02435921
[25] Andersson, E., Barnett, S.M., Gilson, C.R., Hunter, K.: Minimum-error discrimination between three mirror-symmetric states. Phys. Rev. A 65, 052308 (2002) · doi:10.1103/PhysRevA.65.052308
[26] Chou, C.L.: Minimum-error discrimination among mirror-symmetric mixed quantum states. Phys. Rev. A 70, 062316 (2004) · doi:10.1103/PhysRevA.70.062316
[27] Herzog, U., Bergou, J.A.: Minimum-error discrimination between subsets of linearly dependent quantum states. Phys. Rev. A 65, 050305 (2002) · doi:10.1103/PhysRevA.65.050305
[28] Bae, J.: Structure of minimum-error quantum state discrimination. New J. Phys. 15, 073037 (2013) · Zbl 1451.81047 · doi:10.1088/1367-2630/15/7/073037
[29] Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257-259 (1987) · doi:10.1016/0375-9601(87)90222-2
[30] Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19-19 (1988) · doi:10.1016/0375-9601(88)91034-1
[31] Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303-306 (1988) · doi:10.1016/0375-9601(88)90840-7
[32] Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339-347 (1998) · Zbl 1044.81517 · doi:10.1016/S0375-9601(98)00064-4
[33] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2013) · Zbl 1267.15001
[34] Eldar, Y.C.: A semidefinite programming approach to optimal unambiguous discrimination of quantum states. IEEE Trans. Inf. Theory 49, 446-456 (2003) · Zbl 1063.81013 · doi:10.1109/TIT.2002.807291
[35] Pang, S., Wu, S.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A 80, 052320 (2009) · doi:10.1103/PhysRevA.80.052320
[36] Bergou, J.A., Futschik, U., Feldman, E.: Optimal unambiguous discrimination of pure quantum states. Phys. Rev. Lett. 108, 250502 (2012) · doi:10.1103/PhysRevLett.108.250502
[37] Bandyopadhyay, S.: Unambiguous discrimination of linearly independent pure quantum states: optimal average probability of success. Phys. Rev. A 90, 030301(R) (2014) · doi:10.1103/PhysRevA.90.030301
[38] Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists. Elsevier, Amsterdam (2013) · Zbl 1239.00005
[39] Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83-87 (1995) · Zbl 1020.81514 · doi:10.1016/0375-9601(94)00919-G
[40] Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223-229 (1998) · doi:10.1016/S0375-9601(98)00827-5
[41] Eldar, Y.C., Stojnic, M., Hassibi, B.: Optimal quantum detectors for unambiguous detection of mixed states. Phys. Rev. A 69, 062318 (2004) · doi:10.1103/PhysRevA.69.062318
[42] Jafarizadeh, M.A., Rezaei, M., Karimi, N., Amiri, A.R.: Optimal unambiguous discrimination of quantum states. Phys. Rev. A 77, 042314 (2008) · doi:10.1103/PhysRevA.77.042314
[43] Markham, D., Miszczak, J.A., Puchala, Z., Życzkowski, K.: Quantum state discrimination: a geometric approach. Phys. Rev. A 77, 042111 (2008) · doi:10.1103/PhysRevA.77.042111
[44] Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006) · Zbl 1155.81002 · doi:10.1017/CBO9780511535048
[45] Sugimoto, H., Hashimoto, T., Horibe, M., Hayashi, A.: Complete solution for unambiguous discrimination of three pure states with real inner products. Phys. Rev. A 82, 032338 (2010) · Zbl 1255.81100 · doi:10.1103/PhysRevA.82.032338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.