×

Spinors and mass on weighted manifolds. (English) Zbl 1504.53068

The authors prove a positive mass theorem in the weighted setting. More specifically, a weighted manifold is a Riemannian manifold \((M, g)\) endowed with a function \(f: M \rightarrow\) \(\mathbb{R}\), defining the measure \(e^{-f} d V_g\). The weighted mass of an Asymptotically Euclidean (AE) manifold with weight function \(f\) is defined as \[ \mathrm{m}_f(g):=\mathfrak{m}(g)+2 \lim _{\rho \rightarrow \infty} \int_{S_\rho}\langle\nabla f, v\rangle e^{-f} d A, \] where \(S_\rho\) is a coordinate sphere of radius \(\rho\) with outward normal \(\nu\) and area form \(d A\), \(\mathfrak{m}(g)\) is the usual ADM-mass.
Then the authors prove that when \((M,g)\) is AE and spin, one has the weighted Witten equation: \[ \mathrm{m}_f(g)=4 \int_M\left(|\nabla \psi|^2+\frac{1}{4} \mathrm{R}_f|\psi|^2\right) e^{-f} d V_g, \] where \(\mathrm{R}_f\) is the weighted scalar curvature and \(\psi\) is a weighted harmonic spinor that is asymptotically constant near the infinity. Hence, they prove the weighted positive mass theorem if \(\mathrm{R}_f\geq0\). Additionally, the rigidity result is derived.
Moreover, the author shows the monotonicity of the weighted mass under Ricci flow.

MSC:

53C29 Issues of holonomy in differential geometry
53C27 Spin and Spin\({}^c\) geometry
53E20 Ricci flows
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)

References:

[1] Abedin, F.; Corvino, J., On the P-scalar curvature, J. Geom. Anal., 27, 2, 1589-1623 (2017) · Zbl 1369.53025 · doi:10.1007/s12220-016-9732-9
[2] Arnowitt, R.; Deser, S.; Misner, CW, Coordinate invariance and energy expressions in general relativity, Phys. Rev., 122, 3, 997 (1961) · Zbl 0094.23003 · doi:10.1103/PhysRev.122.997
[3] Baldauf, J., Ozuch, T. Monotonicity for spinors in the Ricci flow. In preparation
[4] Baldauf, J., Ozuch, T.: Spinors on weighted manifolds with boundary. In preparation
[5] Bartnik, R., The mass of an asymptotically flat manifold, Commun. Pure Appl. Math., 39, 5, 661-693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[6] Bakry, D., Émery, M.: Diffusions hypercontractives. In: Seminaire de Probabilités XIX 1983(84), pp. 177-206. Springer, Berlin, Heidelberg (1985) · Zbl 0561.60080
[7] Bourguignon, JP; Hijazi, O.; Milhorat, JL; Moroianu, A.; Moroianu, S., A Spinorial Approach to Riemannian and Conformal Geometry (2015), Berlin: European Mathematical Society, Berlin · Zbl 1348.53001 · doi:10.4171/136
[8] Branding, V., Habib, G.: Eigenvalue estimates on weighted manifolds. In preparation · Zbl 07887442
[9] Caldarelli, M.; Catino, G.; Djadli, Z.; Magni, A.; Mantegazza, C., On Perelman’s dilaton, Geom. Dedic., 145, 1, 127-137 (2010) · Zbl 1187.53067 · doi:10.1007/s10711-009-9410-1
[10] Cao, HD; Zhu, M., On second variation of Perelman’s Ricci shrinker entropy, Math. Ann., 353, 3, 747-763 (2012) · Zbl 1252.53074 · doi:10.1007/s00208-011-0701-0
[11] Chaljub-Simon, A., Choquet-Bruhat, Y.: (1979). Problémes elliptiques du second ordre sur une variété euclidienne à l’infini. In: Annales de la Faculté des sciences de Toulouse: Mathématiques, Vol. 1, No. 1, pp. 9-25 · Zbl 0411.35044
[12] Chruściel, P.: Boundary conditions at spatial infinity. In: Topological properties and global structure of space-time, pp. 49-59. Springer, Boston, MA (1986) · Zbl 0687.53070
[13] Colding, T.H., Minicozzi, W.P.: (2012). Generic mean curvature flow I; generic singularities. Ann. Math. 755-833 · Zbl 1239.53084
[14] Corvino, J., Pollack, D.: (2011). Scalar curvature and the Einstein constraint equations. arXiv:1102.5050 · Zbl 1268.53048
[15] Dai, X.; Ma, L., Mass under the Ricci flow, Commun. Math. Phys., 274, 1, 65-80 (2007) · Zbl 1127.53056 · doi:10.1007/s00220-007-0275-6
[16] Deng, J., Curvature-dimension condition meets Gromov’s n-volumic scalar curvature, SIGMA Symmetry Integr. Geom. Methods Appl., 17, 013 (2021) · Zbl 1466.53049
[17] Deruelle, A.; Kröncke, K., Stability of ALE Ricci-flat manifolds under Ricci flow, J. Geom. Anal., 31, 3, 2829-2870 (2021) · Zbl 1469.53137 · doi:10.1007/s12220-020-00376-4
[18] Deruelle, A., Ozuch, T.: (2020). A Łojasiewicz inequality for ALE metrics. arXiv:2007.09937
[19] Deruelle, A., Ozuch, T.: (2021). Dynamical (in)stability of Ricci-flat ALE metrics along Ricci flow. arXiv:2104.10630
[20] Fan, E., Topology of three-manifolds with positive \(P\)-scalar curvature, Proc. Am. Math. Soc., 136, 9, 3255-3261 (2008) · Zbl 1148.53044 · doi:10.1090/S0002-9939-08-09066-7
[21] Friedrich, T., Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr., 97, 1, 117-146 (1980) · Zbl 0462.53027 · doi:10.1002/mana.19800970111
[22] Friedrich, T., Dirac Operators in Riemannian Geometry (2000), Providence: American Mathematical Society, Providence · Zbl 0949.58032
[23] Gromov, M.; Lawson, HB, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. de l’IHÉS, 58, 83-196 (1983) · Zbl 0538.53047 · doi:10.1007/BF02953774
[24] Galloway, GJ; Woolgar, E., Cosmological singularities in Bakry-Émery spacetimes, J. Geom. Phys., 86, 359-369 (2014) · Zbl 1362.83018 · doi:10.1016/j.geomphys.2014.08.016
[25] Haslhofer, R., A renormalized Perelman-functional and a lower bound for the ADM-mass, J. Geom. Phys., 61, 11, 2162-2167 (2011) · Zbl 1225.53062 · doi:10.1016/j.geomphys.2011.06.016
[26] Haslhofer, R., A mass-decreasing flow in dimension three, Math. Res. Lett., 19, 4, 927-938 (2012) · Zbl 1267.53069 · doi:10.4310/MRL.2012.v19.n4.a15
[27] Hijazi, O., A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys., 104, 1, 151-162 (1986) · Zbl 0593.58040 · doi:10.1007/BF01210797
[28] Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. (New Series) Am. Math. Soc. 17(1), 37-91 (1987) · Zbl 0633.53062
[29] Li, C., Mantoulidis, C.: (2021). Metrics with \(\lambda_1 (-\Delta + k )\ge 0\) and flexibility in the Riemannian Penrose Inequality. arXiv:2106.15709
[30] Li, Y., Ricci flow on asymptotically Euclidean manifolds, Geom. Topol., 22, 3, 1837-1891 (2018) · Zbl 1387.53088 · doi:10.2140/gt.2018.22.1837
[31] Lichnerowicz, A., Variétés riemanniennes à tenseur C non négatif, CR Acad. Sci. Paris Sér. AB, 271, A650-A653 (1970) · Zbl 0208.50003
[32] Lichnerowicz, A., Variétés kählériennes à premiére classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Differ. Geom., 6, 1, 47-94 (1971) · Zbl 0231.53063 · doi:10.4310/jdg/1214430218
[33] Lott, J., Villani, C.: (2009). Ricci curvature for metric-measure spaces via optimal transport. Ann Math, 903-991 · Zbl 1178.53038
[34] Lu, Y.; Minguzzi, E.; Ohta, SI, Geometry of weighted Lorentz-Finsler manifolds I: singularity theorems, J. Lond. Math. Soc., 104, 1, 362-393 (2021) · Zbl 1482.53085 · doi:10.1112/jlms.12434
[35] Munteanu, O.; Wang, J., Analysis of weighted Laplacian and applications to Ricci solitons, Commun. Anal. Geom., 20, 1, 55-94 (2012) · Zbl 1245.53039 · doi:10.4310/CAG.2012.v20.n1.a3
[36] Nakajima, H.: (1990). Self-duality of ALE Ricci-flat 4-manifolds and positive mass theorem. In: Recent Topics in Differential and Analytic Geometry. pp. 385-396. Academic Press · Zbl 0744.53025
[37] Oliynyk, TA; Woolgar, E., Rotationally symmetric Ricci flow on asymptotically flat manifolds, Commun. Anal. Geom., 15, 3, 535-568 (2007) · Zbl 1138.53057 · doi:10.4310/CAG.2007.v15.n3.a4
[38] Parker, T.; Taubes, CH, On Witten’s proof of the positive energy theorem, Commun. Math. Phys., 84, 2, 223-238 (1982) · Zbl 0528.58040 · doi:10.1007/BF01208569
[39] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 (2002) · Zbl 1130.53001
[40] Schoen, R.; Yau, ST, Proof of the positive mass theorem, II. Commun. Math. Phys., 79, 2, 231-260 (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[41] Sturm, KT, On the geometry of metric measure spaces, Acta Math., 196, 1, 65-131 (2006) · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[42] Witten, E., A new proof of the positive energy theorem, Commun. Math. Phys., 80, 3, 381-402 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
[43] Witten, E., Supersymmetry and Morse theory, J. Differ. Geom., 17, 4, 661-692 (1982) · Zbl 0499.53056 · doi:10.4310/jdg/1214437492
[44] Witten, E., Monopoles and four-manifolds, Math. Res. Lett., 1, 6, 769-796 (1994) · Zbl 0867.57029 · doi:10.4310/MRL.1994.v1.n6.a13
[45] Woolgar, E.; Wylie, W., Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes, J. Math. Phys., 57, 2 (2016) · Zbl 1336.83033 · doi:10.1063/1.4940340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.