×

Multiple solutions for the fractional \(p\)-Laplacian with jumping reactions. (English) Zbl 1504.35207

Summary: We study a nonlinear elliptic equation driven by the degenerate fractional \(p\)-Laplacian, with Dirichlet-type condition and a jumping reaction, i.e., \((p-1)\)-linear both at infinity and at zero but with different slopes crossing the principal eigenvalue. Under two different sets of hypotheses, entailing different types of asymmetry, we prove the existence of at least two nontrivial solutions. Our method is based on degree theory for monotone operators and nonlinear fractional spectral theory.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R11 Fractional partial differential equations
47H11 Degree theory for nonlinear operators

References:

[1] Aizicovici, S.; Papageorgiou, NS; Staicu, V., Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints (2008), Providence: American Mathematical Society, Providence · Zbl 1165.47041 · doi:10.1090/memo/0915
[2] Aizicovici, S.; Papageorgiou, NS; Staicu, V., The spectrum and an index formula for the Neumann \(p\)-Laplacian and multiple solutions for problems with a crossing nonlinearity, Discrete Contin. Dyn. Syst. Ser. A, 25, 431-456 (2009) · Zbl 1197.35184 · doi:10.3934/dcds.2009.25.431
[3] Ambrosetti, A.; Prodi, G., On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93, 231-246 (1972) · Zbl 0288.35020 · doi:10.1007/BF02412022
[4] Anane, A., Tsouli, N.: On the second eigenvalue of the \(p\)-Laplacian, in ’Nonlinear partial differential equations (Fés, 1994). Pitman Res. Notes Math. 343, 1-9 (1996) · Zbl 0854.35081
[5] Brasco, L.; Franzina, G., Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37, 769-799 (2014) · Zbl 1315.47054 · doi:10.2996/kmj/1414674621
[6] Browder, FE, Degree of mapping for nonlinear operators of monotone type, Proc. Nat. Acad. Sci. USA, 80, 1771-1773 (1983) · Zbl 0533.47051 · doi:10.1073/pnas.80.6.1771
[7] Chen, W.; Mosconi, S.; Squassina, M., Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal., 275, 3065-3114 (2018) · Zbl 1402.35113 · doi:10.1016/j.jfa.2018.02.020
[8] Costa, DG; Tehrani, H., The jumping nonlinearity problem revisited: an abstract approach, Topol. Methods Nonlinear Anal., 21, 249-272 (2003) · Zbl 1112.35006 · doi:10.12775/TMNA.2003.015
[9] Del Pezzo, LM; Quaas, A., Global bifurcation for fractional \(p\)-Laplacian and an application, Z. Anal. Anwend., 35, 411-447 (2016) · Zbl 1351.35247 · doi:10.4171/ZAA/1572
[10] Del Pezzo, LM; Quaas, A., A Hopf’s lemma and a strong minimum principle for the fractional \(p\)-Laplacian, J. Differ. Equ., 263, 765-778 (2017) · Zbl 1362.35061 · doi:10.1016/j.jde.2017.02.051
[11] Del Pezzo, LM; Quaas, A., Non-resonant Fredholm alternative and anti-maximum principle for the fractional \(p\)-Laplacian, J. Fixed Point Theory Appl., 19, 939-958 (2017) · Zbl 1366.35216 · doi:10.1007/s11784-017-0405-5
[12] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[13] Frassu, S.; Iannizzotto, A., Extremal constant sign solutions and nodal solutions for the fractional p-Laplacian, J. Math. Anal. Appl., 501 (2021) · Zbl 1466.35223 · doi:10.1016/j.jmaa.2020.124205
[14] Frassu, S.; Rocha, EM; Staicu, V., The obstacle problem at zero for the fractional \(p\)-Laplacian, Set-Valued Var. Anal., 30, 207-231 (2022) · Zbl 07490854 · doi:10.1007/s11228-020-00562-0
[15] Fučík, S., Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101, 69-87 (1976) · Zbl 0332.34016 · doi:10.21136/CPM.1976.108683
[16] Godoy, T.; Gossez, JP; Paczka, S., On the antimaximum principle for the \(p\)-Laplacian with indefinite weight, Nonlinear Anal., 51, 449-467 (2002) · Zbl 1157.35445 · doi:10.1016/S0362-546X(01)00839-2
[17] Ho, K.; Sim, I., Properties of eigenvalues and some regularities on fractional \(p\)-Laplacian with singular weights, Nonlinear Anal., 189, 1-22 (2019) · Zbl 1427.35170 · doi:10.1016/j.na.2019.111580
[18] Hu, S.; Papageorgiou, NS, Generalizations of Browder’s degree theory, Trans. Am. Math. Soc., 347, 233-259 (1995) · Zbl 0821.47043
[19] Hu, S.; Papageorgiou, NS, Multiple nontrivial solutions for p-Laplacian equations with an asymmetric nonlinearity, Differ. Integr. Equ., 19, 1371-1390 (2006) · Zbl 1212.35082
[20] Iannizzotto, A.: Monotonicity of eigenvalues of the fractional p-Laplacian with singular weights. Topol. Methods Nonlinear Anal. (to appear) · Zbl 1517.35146
[21] Iannizzotto, A.; Livrea, R., Four solutions for fractional \(p\)-Laplacian equations with asymmetric reactions, Mediterr. J. Math., 18, 220 (2021) · Zbl 1473.35008 · doi:10.1007/s00009-021-01860-z
[22] Iannizzotto, A.; Papageorgiou, NS, Existence and multiplicity results for resonant fractional boundary value problems, Discrete Contin. Dyn. Syst. Ser. S, 11, 511-532 (2018) · Zbl 1386.35439
[23] Iannizzotto, A.; Squassina, M., Weyl-type laws for fractional \(p\)-eigenvalue problems, Asymptot. Anal., 88, 233-245 (2014) · Zbl 1296.35103
[24] Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M., Existence results for fractional \(p\)-Laplacian problems via Morse theory, Adv. Calc. Var., 9, 101-125 (2016) · Zbl 1515.35318 · doi:10.1515/acv-2014-0024
[25] Iannizzotto, A., Mosconi, S., Papageorgiou, N.S.: On the logistic equation for the fractional p-Laplacian, Math. Nachr. (to appear) · Zbl 1526.35289
[26] Iannizzotto, A.; Mosconi, S.; Squassina, M., Sobolev versus Hölder minimizers for the degenerate fractional \(p\)-Laplacian, Nonlinear Anal., 191 (2020) · Zbl 1429.35201 · doi:10.1016/j.na.2019.111635
[27] Iannizzotto, A.; Mosconi, S.; Squassina, M., Fine boundary regularity for the degenerate fractional \(p \)-Laplacian, J. Funct. Anal., 279 (2020) · Zbl 1445.35101 · doi:10.1016/j.jfa.2020.108659
[28] Lindgren, E.; Lindqvist, P., Fractional eigenvalues, Calc. Var. Partial Differ. Equ., 49, 795-826 (2014) · Zbl 1292.35193 · doi:10.1007/s00526-013-0600-1
[29] Marano, SA; Papageorgiou, NS, On a Dirichlet problem with \(p\)-Laplacian and asymmetric nonlinearity, Rend. Lincei Mat. Appl., 26, 57-74 (2015) · Zbl 1316.35116
[30] Motreanu, D.; Motreanu, VV; Papageorgiou, NS, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems (2014), New York: Springer, New York · Zbl 1292.47001 · doi:10.1007/978-1-4614-9323-5
[31] Perera, K.; Agarwal, RP; O’Regan, D., Morse Theoretic Aspects of \(p\)-Laplacian Type Operators (2010), Providence: American Mathematical Society, Providence · Zbl 1192.58007 · doi:10.1090/surv/161
[32] Rabinowitz, PH, A note on topological degree for potential operators, J. Math. Anal. Appl., 51, 483-492 (1975) · Zbl 0307.47058 · doi:10.1016/0022-247X(75)90134-1
[33] Ruf, B., On nonlinear elliptic problems with jumping nonlinearities, Ann. Mat. Pura Appl., 128, 133-151 (1981) · Zbl 0475.35046 · doi:10.1007/BF01789470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.