×

Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane. (English) Zbl 1504.32070

Summary: Our purpose is to show the existence of a Calabi-Yau structure on the punctured cotangent bundle \(T^*_0(P^2\mathbb{O})\) of the Cayley projective plane \(P^2\mathbb{O}\) and to construct a Bargmann type transformation from a space of holomorphic functions on \(T^*_0(P^2\mathbb{O})\) to \(L_2\)-space on \(P^2\mathbb{O}\). The space of holomorphic functions corresponds to the Fock space in the case of the original Bargmann transformation. A Kähler structure on \(T^*_0(P^2\mathbb{O})\) was given by identifying it with a quadric in the complex space \(\mathbb{C}^{27} \backslash \{0\}\) and the natural symplectic form of the cotangent bundle \(T^*_0(P^2\mathbb{O})\) is expressed as a Kähler form. Our construction of the transformation is the pairing of polarizations, one is the natural Lagrangian foliation given by the projection map \(\boldsymbol{q}:T^*_0(P^2\mathbb{O}) \longrightarrow P^2\mathbb{O}\) and the other is the polarization given by the Kähler structure.
The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators whose canonical relations are defined by the graph of the geodesic flow action at each time. It turns out that for the Cayley projective plane the results are not same with other cases of the original Bargmann transformation for Euclidean space, spheres and other projective spaces.

MSC:

32Q25 Calabi-Yau theory (complex-analytic aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
53D50 Geometric quantization

References:

[1] [Ba] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces application to distribution theory, Comm. Pure Appl. Math., 20 (1967), 1-101. · Zbl 0149.09601
[2] [Be] A. L. Besse, Manifolds All of Whose Geodesics Are Closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, 1978. · Zbl 0387.53010
[3] [BS] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer Monogr. Math., Springer-Verlag, 2006. · Zbl 1098.47002
[4] [Ch1] H. Chihara, Holomorphic Hermite functions in Segal-Bargmann spaces, Complex Anal. Oper. Theory, 13 (2019), 351-374. · Zbl 1423.33010
[5] [Ch2] H. Chihara, Bargmann-type transforms and modified harmonic oscillators, Bull. Malays. Math. Sci. Soc., 43 (2020), 1719-1740. · Zbl 1496.33007
[6] [FT] K. Furutani and R. Tanaka, A Kähler structure on the punctured cotangent bundle of complex and quaternion projective spaces and its application to a geometric quantization I, J. Math. Kyoto Univ., 34 (1994), 719-737. · Zbl 0830.53052
[7] [Fu1] K. Furutani, Quantization of the geodesic flow on quaternion projective spaces, Ann. Global Anal. Geom., 22 (2002), 1-27. · Zbl 1006.53073
[8] [Fu2] K. Furutani, A Kähler structure on the punctured cotangent bundle of the Cayley projective plane, In: Jean Leray ’99 Conference Proceedings, Math. Phys. Stud., 24, Kluwer Acad. Publ., 2003, 163-182. · Zbl 1035.53103
[9] [FY] K. Furutani and S. Yoshizawa, A Kähler structure on the punctured cotangent bundle of complex and quaternion projective spaces and its application to a geometric quantization II, Japan. J. Math. (N.S.), 21 (1995), 355-392. · Zbl 0851.53041
[10] [He] S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Math. Surveys Monogr., 83, Amer. Math. Soc., 2000. · Zbl 0965.43007
[11] [HL] R. Howe and S. T. Lee, Spherical harmonics on Grassmannians, Colloq. Math., 118 (2010), 349-364. · Zbl 1194.22015
[12] [Ii1] K. Ii, On a Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J. (2), 38 (1986), 57-69. · Zbl 0663.58016
[13] [Ii2] K. Ii and T. Morikawa, Kähler structures on tangent bundle of Riemannian manifolds of constant positive curvature, Bull. Yamagata Univ. Natur. Sci., 14 (1999), no. 3, 141-154. · Zbl 0976.53078
[14] [Koi] N. Koike, Invariant Calabi-Yau structures on punctured complexified symmetric spaces, arXiv:2003.04118v4, 2020.
[15] [Kos] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327-404. · Zbl 0124.26802
[16] [Li] W. Lichtenstein, A system of quadrics describing the orbit of the highest weight vector, Proc. Amer. Math. Soc., 84 (1982), 605-608. · Zbl 0501.22017
[17] [Mu] S. Murakami, Exceptional simple Lie groups and related topics in recent differential geometry, In: Differential Geometry and Topology, Tianjin, 1986-1987, Lecture Notes in Math., 1369, Springer, 1989, 183-221. · Zbl 0701.22006
[18] [Ra1] J. H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford Ser. (2), 28 (1977), 403-415. · Zbl 0387.58002
[19] [Ra2] J. H. Rawnsley, A nonunitary pairing of polarizations for the Kepler problem, Trans. Amer. Math. Soc., 250 (1979), 167-180. · Zbl 0422.58019
[20] [So] J. M. Souriau, Sur la variété de Kepler, Symposia Math., 14 (1974), 343-360. · Zbl 0305.53056
[21] [SV] T. A. Springer and F. D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups, Springer Monogr. Math., Springer-Verlag, 2000. · Zbl 1087.17001
[22] [Sz1] R. Szőke, Complex structures on tangent bundles of Riemannian manifolds, Math. Ann., 291 (1991), 409-428. · Zbl 0749.53021
[23] [Sz2] R. Szőke, Adapted complex structures and geometric quantization, Nagoya Math. J., 154 (1999), 171-183. · Zbl 0937.53037
[24] [Yo] I. Yokota, Exceptional Lie groups, arXiv:0902.0431v1, 2009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.