×

Poles of Eisenstein series and theta lifts for unitary groups. (English) Zbl 1504.11062

Lifts of automorphic representations and their associated \(L\)-functions are constructions where specific cases of Langlands functoriality can be studied. In this case, the author considers a number field \(F\) and a quadratic extension \(E\) over \(F\). Let \(X\) be a skew-Hermitian space over \(E\) and \(Y\) a Hermitian space over \(E\). Consider the unitary groups \(G(X)\) and \(G(Y)\) associated to \(X\) and \(Y\), respectively. The groups \(G(X)\) and \(G(Y)\) form a dual reductive pair and given a cuspidal automorphic representation \(\pi\) of \(G(X)(\mathbb A_F)\) one can define a global theta lift of \(G(Y)(\mathbb A_F)\). However, lifts can be also defined in the other direction. The basic ideas come from several results starting with the Rallis inner product formula [S. S. Kudla and S. Rallis, Ann. Math. (2) 140, No. 1, 1–80 (1994; Zbl 0818.11024)] relating the poles certain \(L\)-functions to the vanishing of theta lifts. Ramified local factors are present in the Rallis inner product formula and therefore the relation between the poles of these \(L\)-functions is not exact.
Let \(\sigma\) be a cuspidal representation of \(G(X)(\mathbb A_F)\) and \(\chi\) a conjugate self-dual character of \(\mathbb A^\times_E\). The author follows an idea of C. Mœglin [J. Lie Theory 7, No. 2, 201–229 (1997; Zbl 0885.11032)] considering the poles of Eisenstein series associated to the cuspidal datum \(\sigma\otimes \chi\). These Eisenstein series are closely related to the \(L\)-functions \(L(s,\sigma\times \chi^{-1})\). In the paper [Mœglin, loc. cit.] the cases of orthogonal and symplectic/metaplectic dual reductive pairs were already investigated. The author of the present paper and D. Jiang started the study of unitary dual pairs in [J. Number Theory 161, 88–118 (2016; Zbl 1400.11102)]. Here we state the main result of the author:
Theorem. Let \(\sigma\) be a cuspidal representation of \(G(X)(\mathbb A_F)\). Then \(s_0\) is the maximal pole of the Eisenstein series \(E(g,f_s\) for \(f_s\) running over \(\mathcal A_1(s, \chi, \sigma)\) if and only if \(\mathrm{LO}_{\psi, \chi}(\sigma) = \dim X -1 -2s_0\). Here \(\mathcal A_1(s, \chi, \sigma)\) denotes the space of automorphic forms on some quotient space and the Eisenstein series is defined for each section \(f_s\) in \(\mathcal A_1(s, \chi, \sigma)\).
The proof of this theorem relies on an intricate result relating period integrals of residues of Eisenstein series twisted by a theta series and a the fist occurrence index \(\mathrm{FO}^Y_{\psi, \chi}(\sigma)\) for the Witt tower of \(Y\).

MSC:

11F27 Theta series; Weil representation; theta correspondences
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

References:

[1] ; Arthur, James G., A trace formula for reductive groups, I : Terms associated to classes in G(ℚ), Duke Math. J., 45, 4, 911 (1978) · Zbl 0499.10032
[2] 10.1090/coll/061 · doi:10.1090/coll/061
[3] 10.1017/S002776300001059X · Zbl 1280.11028 · doi:10.1017/S002776300001059X
[4] 10.1007/s00222-014-0509-0 · Zbl 1320.11037 · doi:10.1007/s00222-014-0509-0
[5] 10.1017/S1474748009000097 · Zbl 1239.11063 · doi:10.1017/S1474748009000097
[6] ; Godement, Roger, Domaines fondamentaux des groupes arithmétiques, Séminaire Bourbaki, 1962/1963 (1964) · Zbl 0136.30101
[7] 10.1090/S0894-0347-96-00198-1 · Zbl 0870.11026 · doi:10.1090/S0894-0347-96-00198-1
[8] 10.1515/crll.2001.076 · Zbl 1022.11020 · doi:10.1515/crll.2001.076
[9] 10.1007/s00209-003-0580-5 · Zbl 1071.11022 · doi:10.1007/s00209-003-0580-5
[10] 10.1090/conm/614/12253 · Zbl 1315.11037 · doi:10.1090/conm/614/12253
[11] 10.1016/j.jnt.2014.12.003 · Zbl 1400.11102 · doi:10.1016/j.jnt.2014.12.003
[12] 10.1007/s11856-018-1658-4 · Zbl 1442.11080 · doi:10.1007/s11856-018-1658-4
[13] ; Kim, Henry H.; Kim, Wook, On local L-functions and normalized intertwining operators, II : Quasi-split groups, On certain L-functions. Clay Math. Proc., 13, 265 (2011) · Zbl 1297.11049
[14] 10.1007/BF02773003 · Zbl 0840.22029 · doi:10.1007/BF02773003
[15] 10.2307/2118540 · Zbl 0818.11024 · doi:10.2307/2118540
[16] 10.1515/crll.1992.428.177 · Zbl 0749.11032 · doi:10.1515/crll.1992.428.177
[17] ; Mœglin, Colette, Non nullité de certains relêvements par séries théta, J. Lie Theory, 7, 2, 201 (1997) · Zbl 0885.11032
[18] 10.1017/CBO9780511470905 · doi:10.1017/CBO9780511470905
[19] 10.1090/memo/1108 · Zbl 1316.22018 · doi:10.1090/memo/1108
[20] ; Rallis, S., On the Howe duality conjecture, Compos. Math., 51, 3, 333 (1984) · Zbl 0624.22011
[21] 10.1090/coll/058 · doi:10.1090/coll/058
[22] 10.1016/j.jnt.2013.04.014 · Zbl 1295.11053 · doi:10.1016/j.jnt.2013.04.014
[23] 10.1007/s11425-015-0770-7 · Zbl 0772.53066 · doi:10.1007/s11425-015-0770-7
[24] 10.1016/j.jnt.2022.03.010 · Zbl 1505.11082 · doi:10.1016/j.jnt.2022.03.010
[25] 10.1007/s00222-013-0476-x · Zbl 1303.11054 · doi:10.1007/s00222-013-0476-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.