×

The effect of diffusion on propagation and reflection of waves in a thermo-microstretch solid half-space. (English) Zbl 1503.74062

The authors study the propagation of waves in a thermo-microstretch solid half-space in the presence of diffusion. The governing equations for homogeneous, isotropic, linear thermo-microstretch solid and diffusion in the absence of body forces, body couple, heat, and mass diffusive sources are written as six equations using Lord-Shulman theory of generalized thermoelasticity. These equations are then expressed in terms of Helmholtz potentials. For the reflection from the free surface of the half-space, it is found that six plane waves are produced. The effects of the frequency and diffusion coefficients are studied. The energy ratios of the reflected waves are computed against the angle of incidence for different diffusivities. A numerically computed graphical representation is also presented.

MSC:

74J20 Wave scattering in solid mechanics
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Duhamel, JMC, Second thesis on thermomechanical phenomena (Second memoire sur les phenomenes thermomechaniques), J. Ecole Polytechn., 15, 1-57 (1837)
[2] Biot, MA, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253 (1956) · Zbl 0071.41204 · doi:10.1063/1.1722351
[3] Lord, H.; Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 5, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[4] Green, AE; Lindsay, KA, Thermoelasticity, J. Elast., 2, 1-7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[5] Dhaliwal, RS; Sherief, HH, Generalised thermoelasticity for anisotropic media, Q. Appl. Math., 38, 1-8 (1980) · Zbl 0432.73013 · doi:10.1090/qam/575828
[6] Chandresekharaiah, DS, Thermoelasticity with second sound: A Review, Appl. Mech. Rev., 39, 3, 355-376 (1986) · Zbl 0588.73006 · doi:10.1115/1.3143705
[7] Green, AE; Naghdi, PM, A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond. A, 432, 171-194 (1991) · Zbl 0726.73004 · doi:10.1098/rspa.1991.0012
[8] Green, AE; Naghdi, PM, On thermodynamics and the nature of the second law, Proc. R. Soc. Lond. A, 357, 253-270(1977) (1690)
[9] A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elast., 31(3), 189-209(1993). · Zbl 0784.73009
[10] R. B. Hetnarski and J. Ignaczak, “Soliton like waves in a low temperature nonlinear thermoelastic solid,” Int. J. Eng. Sci., 34(15), 1767-1787(1996). · Zbl 0914.73016
[11] W. Nowacki, “Dynamical problems of thermodiffusion in solids-I,” Bull. Pol. Acad. Sci. Ser., Sci. Technol.,22, 55-64 (1974). · Zbl 0327.73005
[12] W. Nowacki, “Dynamical problems of thermodiffusion in solids-II,” Bull. Pol. Acad. Sci. Ser., Sci. Technol.,22, 129-135 (1974). · Zbl 0327.73004
[13] W. Nowacki, “Dynamical problems of thermodiffusion in solids-III,” Bull. Pol. Acad. Sci. Ser., Sci. Technol.,22, 257-266 (1974). · Zbl 0327.73005
[14] Nowacki, W., Dynamical problems of diffusion in solids, Eng. Fract. Mech., 8, 1, 261-266 (1976) · Zbl 0354.73009 · doi:10.1016/0013-7944(76)90091-6
[15] Dudziak, W.; Kowalski, SJ, Theory of thermodiffusion for solids, Int. J. Heat Mass Transfer, 32, 11, 2005-2013 (1989) · Zbl 0683.73002 · doi:10.1016/0017-9310(89)90107-5
[16] Olesiak, ZS; Pyryev, YA, A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder, Int. J. Eng. Sci., 33, 6, 773-780 (1995) · Zbl 0899.73052 · doi:10.1016/0020-7225(94)00099-6
[17] Sherief, HH; Saleh, H.; Hamza, F., The theory of generalized thermoelastic diffusion, Int. J. Eng. Sci., 42, 5-6, 591-608 (2004) · Zbl 1211.74080 · doi:10.1016/j.ijengsci.2003.05.001
[18] Aouadi, M., Theory of generalized micropolar thermoelastic diffusion under Lord-Shulman model, J. Therm. Stresses, 32, 9, 923-942 (2009) · doi:10.1080/01495730903032276
[19] A. C. Eringen, “Micropolar Elastic Solids with Stretch,” in: Prof. Dr. Mustafa Inan Anisina, Ari. Kitapevi Matbaassi, Istanbul, 1-18 (1971).
[20] Eringen, AC, Theory of thermo-microstretch fluids and bubbly liquids, Int. J. Eng. Sci., 28, 2, 133-143 (1990) · Zbl 0709.76015 · doi:10.1016/0020-7225(90)90063-O
[21] Eringen, AC, Theory of thermo-microstretch elastic solids, Int. J. Eng. Sci., 28, 12, 1291-1301 (1990) · Zbl 0718.73014 · doi:10.1016/0020-7225(90)90076-U
[22] Eringen, AC, Microcontinuum field theory I: Foundations and solids (1999), Berlin: Springer-Verlag, Berlin · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[23] Eringen, AC, Electromagnetic theory of microstretch elasticity and bone modelling, Int. J. Eng. Sci., 42, 3-4, 231-242 (2004) · Zbl 1211.74024 · doi:10.1016/S0020-7225(03)00288-X
[24] Kumar, R.; Singh, B., Wave propagation in a micropolar generalized thermoelastic body with stretch, Proc. Indian Acad. Sci. (Math. Sci.), 106, 2, 183-199 (1996) · Zbl 0858.73018 · doi:10.1007/BF02837172
[25] Kumar, R.; Singh, B., Reflection of plane waves from the flat boundary of a micropolar generalized thermoelastic half space with stretch, Indian J. Pure Appl. Math., 29, 6, 657-669 (1998) · Zbl 0927.74037
[26] Singh, B.; Kumar, R., Wave propagation of in generalized thermo-microstretch elastic solid, Int. J. Eng. Sci., 36, 7-8, 891-912 (1998) · Zbl 1210.74064 · doi:10.1016/S0020-7225(97)00099-2
[27] B. Singh, “Reflection of plane waves from free surface of a microstretch elastic solid,” J. Earth Syst. Sci., 111(1), 29-37 (2002).
[28] Kumar, R.; Pratap, G., Refection of plane waves in a heat flux dependent microstretch thermoelastic solid half space, Int. J. Appl. Mech. Eng., 10, 2, 253-266 (2005) · Zbl 1195.74089
[29] Abbas, IA; Othman, MIA, Plane waves in generalized thermo-microstretch elastic solid with thermal relaxation using finite element method, Int. J. Thermophys, 33, 12, 2407-2423 (2012) · doi:10.1007/s10765-012-1340-8
[30] Othman, MIA; Atwa, SY; Jahangir, A.; Khan, A., Effect of magnetic field and rotation on generalized thermo-microstretch elastic solid with model crack under the Green Naghdi theory, Comput. Math. Model., 24, 4, 566-591 (2013) · Zbl 1308.74122 · doi:10.1007/s10598-013-9200-3
[31] Khurana, A.; Tomar, SK, Wave propagation in nonlocal microstretch solid, Appl. Math. Model., 40, 11-12, 5858-5875 (2016) · Zbl 1465.74083 · doi:10.1016/j.apm.2016.01.035
[32] Singh, D.; Rani, N.; Tomar, SK, Dilatational waves at a microstretch solid/fluid interface, J. Vib. Control, 23, 20, 3448-3467 (2017) · Zbl 1387.74047 · doi:10.1177/1077546316631158
[33] Singh, B., Reflection of P and SV waves from free surface of an elastic solid with generalized thermodiffusion, J. Earth Syst. Sci., 114, 2, 159-168 (2005) · doi:10.1007/BF02702017
[34] Kumar, R.; Ahuja, S.; Garg, SK, Rayleigh waves in isotropic microstretch thermoelastic diffusion solid half space, Lat. Am. J. Solids Struct., 11, 2, 299-319 (2014) · doi:10.1590/S1679-78252014000200009
[35] Parfitt, VR; Eringen, AC, Reflection of plane waves from a flat boundary of a micropolar elastic half-space, J. Acoust. Soc. Am., 45, 5, 1258-1272 (1969) · doi:10.1121/1.1911598
[36] Achenbach, JD, Wave propagation in elastic solids (1973), North Holland · Zbl 0268.73005
[37] R. D. Gauthier, “Experimental Investigations on Micropolar Media,” in: O. Brulin and R. K. T. Hsieh (eds.), Mechanics of Micropolar Media, World Scientific, Singapore, 395-463 (1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.