×

Natural characteristic and vibration analysis of nonlinear articulated multi-beam ring structure for modeling ring truss antenna under base excitation. (English) Zbl 1503.74048

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Chen, Y.; Feng, J.; Sun, Q. Z., Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry, Int. J. Solids Struct., 139-140, 1-14 (2018)
[2] Li, Y. Y.; Wei, J. F.; Dai, L., Structural design and dynamic analysis of new ultra-large planar deployable antennas in space with locking systems, Aerosp. Sci. Technol., 106, Article 106082 pp. (2020)
[3] Chandra, M.; Kumar, S.; Chattopadhyaya, S.; Chatterjee, S.; Kumar, P., A review on developments of deployable membrane-based reflector antennas, Adv. Space Res., 68, 9, 3749-3764 (2021)
[4] Cao, W. A.; Xi, S.; Ding, H. F.; Chen, Z. M., Design and kinematics of a novel double-ring truss deployable antenna mechanism, J. Mech. Des., 143, 12, Article 1124502 pp. (2021)
[5] Santiago-Prowald, J.; Baier, H., Advances in deployable structures and surfaces for large apertures in space, CEAS Space J., 5, 89-115 (2013)
[6] Zhang, W.; Zheng, Y.; Liu, T.; Guo, X. Y., Multi-pulse jumping double-parameter chaotic dynamics of eccentric rotating ring truss antenna under combined parametric and external excitations, Nonlinear Dyn., 98, 761-800 (2019)
[7] Han, B.; Xu, Y. D.; Yao, J. T.; Zheng, D.; Guo, L. Y.; Zhao, Y. S., Type synthesis of deployable mechanisms for ring truss antenna based on constraint-synthesis method, Chin. J. Aeronaut., 33, 09, 2445-2460 (2020)
[8] Gao, X. M.; Jin, D. P.; Chen, T., Nonlinear analysis and experimental investigation of a rigid-flexible antenna system, Meccanica, 53, 33-48 (2018) · Zbl 1390.70052
[9] Zhang, W.; Chen, J.; Sun, Y., Nonlinear breathing vibrations and chaos of a circular truss antenna with 1:2 internal resonance, Int. J. Bifurc. Chaos, 26, 5, Article 1650077 pp. (2016) · Zbl 1343.78014
[10] Liu, M.; Cao, D. Q.; Zhu, D. F., Coupled vibration analysis for equivalent dynamic model of the space antenna truss, Appl. Math. Model., 89, 1, 285-298 (2021) · Zbl 1485.74032
[11] Zhang, W.; Xi, A.; Siriguleng, B.; Liu, G., An equivalent cylindrical shell model of vibration analysis based on simplified repeating unit cell for ring truss structure, J. Sound Vib., 459, Article 114847 pp. (2019)
[12] Liu, F. S.; Jin, D. P.; Wen, H., Equivalent dynamic model for hoop truss structure composed of planar repeating elements, AIAA J., 55, 3, 1058-1063 (2017)
[13] Winfrey, R. C., Elastic link mechanism dynamics, J. Eng. Ind., 93, 1, 268-272 (1971)
[14] Winfrey, R. C., Dynamic analysis of elastic link mechanisms by reduction of coordinates, J. Eng. Ind., 94, 2, 577-581 (1972)
[15] Erdman, A. G.; Sandor, G. N.; Oakberg, R. G., A general method for kineto-elastodynamic analysis and synthesis of mechanisms, J. Eng. Ind., 94, 4, 1193-1205 (1972)
[16] Erdman, A. G.; Sandor, G. N., Kineto-elastodynamics – a review of the state of the art and trends, Mech. Mach. Theory, 7, 1, 19-33 (1972)
[17] Wei, J.; Cao, D. Q.; Liu, L.; Huang, W. H., Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass, Appl. Math. Model., 48, 787-805 (2017) · Zbl 1480.70005
[18] Liu, L.; Cao, D. Q.; Wei, J., Rigid-flexible coupling dynamic modeling and vibration control for flexible spacecraft based on its global analytical modes, Sci. China Technol. Sci., 62, 608-618 (2019)
[19] Shabana, A. A., Definition of the slopes and the finite element absolute nodal coordinate formulation, Multibody Syst. Dyn., 1, 339-348 (1997) · Zbl 0890.73071
[20] Lepidi, M.; Gattulli, V., A parametric multi-body section model for modal interactions of cable-supported bridges, J. Sound Vib., 333, 19, 4579-4596 (2014)
[21] Cai, G. P.; Hong, J. Z.; Yang, S. X., Dynamic analysis of a flexible hub-beam system with tip mass, Mech. Res. Commun., 32, 173-190 (2005) · Zbl 1158.74373
[22] Fotouhi, R., Dynamic analysis of very flexible beams, J. Sound Vib., 305, 521-533 (2007)
[23] Zohoor, H.; Khorsandijou, S. M., Dynamic model of a flying manipulator with two highly flexible links, Appl. Math. Model., 32, 2117-2132 (2008) · Zbl 1145.74383
[24] Wang, Z. Q.; Sun, C. S.; Zhao, Y. B.; Yi, Z. P., Modeling and nonlinear modal characteristics of the cable-stayed beam, Eur. J. Mech. A Solid, 47, 58-69 (2014) · Zbl 1406.74412
[25] Bowden, M.; Dugundji, J., Joint damping and nonlinearity in dynamics of space structures, AIAA J., 28, 4, 740-749 (1990)
[26] Wei, F.; Zheng, G. T., Nonlinear vibration analysis of spacecraft with local nonlinearity, Mech. Syst. Signal Pr., 24, 2, 481-490 (2010)
[27] Wei, J.; Cao, D. Q.; Huang, H.; Wang, L. C.; Huang, W. H., Dynamics of a multi-beam structure connected with nonlinear joints: modelling and simulation, Arch. Appl. Mech., 88, 1059-1074 (2018)
[28] He, G. Q.; Cao, D. Q.; Wei, J.; Cao, Y. T.; Chen, Z. G., Study on analytical global modes for a multi-panel structure connected with flexible hinges, Appl. Math. Model., 91, 1081-1099 (2021) · Zbl 1481.74522
[29] Gilardi, G.; Sharf, I., Literature survey of contact dynamics modelling, Mech. Mach. Theory, 37, 10, 1213-1239 (2002) · Zbl 1062.70553
[30] Hunt, K. H.; Crossley, F. R.E., Coefficient of restitution interpreted as damping in vibroimpact, J. Appl. Mech., 42, 2, 440-445 (1975)
[31] Crawley, E. F.; O’donnell, K. J., Force-state mapping identification of nonlinear joints, AIAA J., 25, 7, 1003-1010 (1987)
[32] Zhu, Z.; Zhou, X.; Wang, R.; Liu, Q., A simple compliance modeling method for flexure hinges, Sci. China Technol. Sci., 58, 56-63 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.