×

Gathering anonymous, oblivious robots on a grid. (English) Zbl 1503.68277

Fernández Anta, Antonio (ed.) et al., Algorithms for sensor systems. 13th international symposium on algorithms and experiments for wireless sensor networks, ALGOSENSORS 2017, Vienna, Austria, September 7–8, 2017. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 10718, 168-181 (2017).
Summary: We consider a swarm of \(n\) autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robots is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs \(\mathcal{O}(n^2)\) rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous \(\mathcal{FSYNC}\) model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and “flags” to communicate these states to neighbors in viewing range. They gather in time \(\mathcal{O}(n)\).
In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), “flags” and states. We prove its correctness and an \(\mathcal{O}(n^2)\) time bound in the fully synchronous \(\mathcal{FSYNC}\) time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a \({2\times 2}\) square, because in \(\mathcal{FSYNC}\) such configurations cannot be solved.
For the entire collection see [Zbl 1409.68015].

MSC:

68T40 Artificial intelligence for robotics
68M14 Distributed systems
68W15 Distributed algorithms

References:

[1] Abshoff, S., Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering a closed chain of robots on a grid. In: IPDPS 2016, pp. 689-699 (2016). https://doi.org/10.1109/IPDPS.2016.51
[2] Ando, H., Suzuki, Y., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: ISIC 1995, pp. 453-460, August 1995
[3] Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181-1196. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_90 · Zbl 1039.68129 · doi:10.1007/3-540-45061-0_90
[4] Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Královic̆, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 79-88. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27796-5_8 · Zbl 1085.68697 · doi:10.1007/978-3-540-27796-5_8
[5] Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically optimal gathering on a grid. In: SPAA 2016, pp. 301-312 (2016). http://doi.acm.org/10.1145/2935764.2935789
[6] Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: SPAA 2011, pp. 139-148 (2011)
[7] Degener, B., Kempkes, B., Meyer auf der Heide, F.: A local \(O(n^2)\) gathering algorithm. In: SPAA 2010, pp. 217-223 (2010)
[8] Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69-96 (2006) · Zbl 1100.68077 · doi:10.1007/s00453-006-0074-2
[9] Dynia, M., Kutylowski, J., Lorek, P., Meyer auf der Heide, F.: Maintaining communication between an explorer and a base station. In: IFIP TC10, pp. 137-146, 1 January 2006
[10] D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327-338. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31104-8_28 · doi:10.1007/978-3-642-31104-8_28
[11] Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious robots on a grid. CoRR abs/1702.03400 (2017). http://arxiv.org/abs/1702.03400 · Zbl 1503.68277
[12] Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool, San Rafael (2012) · Zbl 1286.68484
[13] Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SICOMP 41(1), 26-46 (2012) · Zbl 1242.68178 · doi:10.1137/100797916
[14] Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass models and gathering algorithms for autonomous mobile robots. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274-288. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_22 · Zbl 1201.68122 · doi:10.1007/978-3-540-72951-8_22
[15] Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. TCS 390(1), 27-39 (2008) · Zbl 1134.68013 · doi:10.1016/j.tcs.2007.09.032
[16] Kutylowski, J., Meyer auf der Heide, F.: Optimal strategies for maintaining a chain of relays between an explorer and a base camp. TCS 410(36), 3391-3405 (2009) · Zbl 1191.68714 · doi:10.1016/j.tcs.2008.04.010
[17] Martînez, S.: Practical multiagent rendezvous through modified circumcenter algorithms. Automatica 45(9), 2010-2017 (2009) · Zbl 1175.93163 · doi:10.1016/j.automatica.2009.05.013
[18] Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. TCS 384(2-3), 222-231 (2007) · Zbl 1125.68124 · doi:10.1016/j.tcs.2007.04.023
[19] Saadatmand, S., Moazzami, D., Moeini, A.: A cellular automaton based algorithm for mobile sensor gathering. JAC 47(1), 93-99 (2016)
[20] Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 213-224. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-9_18 · Zbl 1406.68109 · doi:10.1007/978-3-319-03578-9_18
[21] Di Stefano, G., Navarra, A.: Optimal gathering on infinite grids. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 211-225. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11764-5_15
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.