×

Weak and strong convergence Bregman extragradient schemes for solving pseudo-monotone and non-Lipschitz variational inequalities. (English) Zbl 1503.65134

Summary: In this paper, we introduce Bregman subgradient extragradient methods for solving variational inequalities with a pseudo-monotone operator which are not necessarily Lipschitz continuous. Our algorithms are constructed such that the stepsizes are determined by an Armijo line search technique, which improves the convergence of the algorithms without prior knowledge of any Lipschitz constant. We prove weak and strong convergence results for approximating solutions of the variational inequalities in real reflexive Banach spaces. Finally, we provide some numerical examples to illustrate the performance of our algorithms to related algorithms in the literature.

MSC:

65K15 Numerical methods for variational inequalities and related problems
47J25 Iterative procedures involving nonlinear operators
65J15 Numerical solutions to equations with nonlinear operators

References:

[1] Alakoya, T. O.; Jolaoso, L. O.; Mewomo, O. T., Modified inertial subgradient extragradient method with self-adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization (2020) · Zbl 1438.65138 · doi:10.1080/02331934.2020.1723586
[2] Alber, Y. I.; Kartsatos, A. G., Metric and generalized projection operators in Banach spaces: properties and applications, Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, 15-50 (1996), New York: Marcel Dekker, New York · Zbl 0883.47083
[3] Antipin, A. S., On a method for convex programs using a symmetrical modification of the Lagrange function, Èkon. Mat. Metody, 12, 1164-1173 (1976) · Zbl 0368.90115
[4] Bauschke, H. H.; Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2011), New York: Springer, New York · Zbl 1218.47001
[5] Beck, A., First-Order Methods in Optimization (2017), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1384.65033
[6] Bregman, L. M., The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7, 200-217 (1967) · Zbl 0186.23807 · doi:10.1016/0041-5553(67)90040-7
[7] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018 · doi:10.1007/s10957-010-9757-3
[8] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26, 827-845 (2011) · Zbl 1232.58008 · doi:10.1080/10556788.2010.551536
[9] Censor, Y.; Gibali, A.; Reich, S., Extensions of Korpelevich’s extragradient method for variational inequality problems in Euclidean space, Optimization, 61, 1119-1132 (2012) · Zbl 1260.65056 · doi:10.1080/02331934.2010.539689
[10] Censor, Y.; Lent, A., An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34, 321-353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676
[11] Denisov, S. V.; Semenov, V. V.; Chabak, L. M., Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51, 757-765 (2015) · Zbl 1331.49010 · doi:10.1007/s10559-015-9768-z
[12] Denisov, S. V.; Semenov, V. V.; Stetsynk, P. I., Bregman extragradient method with monotone rule of step adjustment, Cybern. Syst. Anal., 55, 3, 377-383 (2019) · Zbl 1493.47087 · doi:10.1007/s10559-019-00144-5
[13] Dong, Q. L.; Jiang, D.; Gibali, A., A modified subgradient extragradient method for solving the variational inequality problem, Numer. Algorithms, 79, 927-940 (2018) · Zbl 06967417 · doi:10.1007/s11075-017-0467-x
[14] Dong, Q. L.; Lu, Y. Y.; Yang, J., The extragradient algorithm with inertial effects for solving the variational inequality, Optimization, 65, 12, 2217-2226 (2016) · Zbl 1358.90139 · doi:10.1080/02331934.2016.1239266
[15] Facchinei, F.; Pang, J. S., Finite-Dimensional Variational Inequalities and Complementarity Problems (2003), New York: Springer, New York · Zbl 1062.90001
[16] Fang, C.; Chen, S., Some extragradient algorithms for variational inequalities, Advances in Variational and Hemivariational Inequalities, 145-171 (2015), Cham: Springer, Cham · Zbl 1318.49013
[17] Fichera, G., Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 34, 138-142 (1963) · Zbl 0128.18305
[18] Gibali, A., A new Bregman projection method for solving variational inequalities in Hilbert spaces, Pure Appl. Funct. Anal., 3, 3, 403-415 (2018) · Zbl 1474.47125
[19] Glowinski, R.; Lions, J. L.; Trémoliéres, R., Numerical Analysis of Variational Inequalities (1981), Amsterdam: North-Holland, Amsterdam · Zbl 0463.65046
[20] Goldstein, A. A., Convex programming in Hilbert space, Bull. Am. Math. Soc., 70, 709-710 (1964) · Zbl 0142.17101 · doi:10.1090/S0002-9904-1964-11178-2
[21] Gossez, J. P.; Lami Dozo, E., Some geometric properties related to the fixed point theory for nonexpansive mappings, Pac. J. Math., 40, 565-573 (1972) · Zbl 0223.47025 · doi:10.2140/pjm.1972.40.565
[22] Halpern, B., Fixed points of nonexpanding maps, Proc. Am. Math. Soc., 73, 957-961 (1967) · Zbl 0177.19101
[23] Huang, Y. Y.; Jeng, J. C.; Kuo, T. Y.; Hong, C. C., Fixed point and weak convergence theorems for point-dependent λ-hybrid mappings in Banach spaces, Fixed Point Theory Appl., 2011 (2011) · Zbl 1311.47069 · doi:10.1186/1687-1812-2011-105
[24] Jolaoso, L. O.; Alakoya, T. O.; Taiwo, A.; Mewomo, O. T., An inertial extragradient method via viscoscity approximation approach for solving equilibrium problem in Hilbert spaces, Optimization (2020) · Zbl 1438.65138 · doi:10.1080/02331934.2020.1716752
[25] Jolaoso, L. O.; Ogbuisi, F. U.; Mewomo, O. T., An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math., 9, 3, 167-184 (2017) · Zbl 06904893 · doi:10.1515/apam-2017-0037
[26] Jolaoso, L. O.; Taiwo, A.; Alakoya, T. O.; Mewomo, O. T., A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math., 52, 183-203 (2019) · Zbl 1418.49008 · doi:10.1515/dema-2019-0013
[27] Jolaoso, L. O.; Taiwo, A.; Alakoya, T. O.; Mewomo, O. T., A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math. (2019) · Zbl 1438.65138 · doi:10.1007/s40314-019-1014-2
[28] Jolaoso, L. O.; Taiwo, A.; Alakoya, T. O.; Mewomo, O. T., A strong convergence theorem for solving pseudo-monotone variational inequalities using projection methods in a reflexive Banach space, J. Optim. Theory Appl. (2020) · Zbl 07211749 · doi:10.1007/s10957-020-01672-3
[29] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications (1980), New York: Academic Press, New York · Zbl 0457.35001
[30] Korpelevich, G. M., The extragradient method for finding saddle points and other problems, Èkon. Mat. Metody, 12, 747-756 (1976) · Zbl 0342.90044
[31] Levitin, E. S.; Polyak, B. T., Constrained minimization problems, USSR Comput. Math. Math. Phys., 6, 1-50 (1966) · Zbl 0184.38902 · doi:10.1016/0041-5553(66)90114-5
[32] Lin, L. J.; Yang, M. F.; Ansari, Q. H.; Kassay, G., Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps, Nonlinear Anal., Theory Methods Appl., 61, 1-19 (2005) · Zbl 1065.49008 · doi:10.1016/j.na.2004.07.038
[33] Mashreghi, J.; Nasri, M., Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory, Nonlinear Anal., 72, 2086-2099 (2010) · Zbl 1179.49013 · doi:10.1016/j.na.2009.10.009
[34] Nemirovski, A., Prox-method with rate of convergence \(O(1/t)\) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems, SIAM J. Optim., 15, 229-251 (2004) · Zbl 1106.90059 · doi:10.1137/S1052623403425629
[35] Nomirovskii, D. A.; Rublyov, B. V.; Semenov, V. V., Convergence of two-step method with Bregman divergence for solving variational inequalities, Cybern. Syst. Anal., 55, 3, 359-368 (2019) · Zbl 1485.49018 · doi:10.1007/s10559-019-00142-7
[36] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73, 591-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[37] Reem, D.; Reich, S.; De Pierro, A., Re-examination of Bregman functions and new properties of their divergences, Optimization, 68, 279-348 (2019) · Zbl 1407.52008 · doi:10.1080/02331934.2018.1543295
[38] Reich, S.; Sabach, S., A strong convergence theorem for proximal type-algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10, 471-485 (2009) · Zbl 1180.47046
[39] Solodov, M. V.; Svaiter, B. F., A new projection method for variational inequality problems, SIAM J. Control Optim., 37, 765-776 (1999) · Zbl 0959.49007 · doi:10.1137/S0363012997317475
[40] Stampacchia, G., Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci. Paris, 258, 4413-4416 (1964) · Zbl 0124.06401
[41] Taiwo, A.; Jolaoso, L. O.; Mewomo, O. T., A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math., 38, 2 (2019) · Zbl 1438.47122 · doi:10.1007/s40314-019-0841-5
[42] Thong, D. V.; Hieu, D. V., New extragradient methods for solving variational inequality problems and fixed point problems, J. Fixed Point Theory Appl., 20 (2018) · Zbl 1490.65104 · doi:10.1007/s11784-018-0610-x
[43] Thong, D. V.; Shehu, Y.; Iyiola, O. S., A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators, Comput. Appl. Math., 39 (2020) · Zbl 1449.47115 · doi:10.1007/s40314-020-1136-6
[44] Thong, D. V.; Vinh, N. T.; Cho, Y. J., A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems, Optim. Lett. (2019) · doi:10.1007/s115900-019-01391-3
[45] Thong, D. V.; Vuong, P. T., Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities, Optimization, 68, 11, 2207-2226 (2019) · Zbl 1502.47085 · doi:10.1080/02331934.2019.1616191
[46] Xu, H. K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.