×

Lie-Trotter splitting for the nonlinear stochastic Manakov system. (English) Zbl 1503.65007

Summary: This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove that the strong order of the numerical approximation is 1/2 if the nonlinear term in the system is globally Lipschitz. Then, we show that the splitting scheme has convergence order 1/2 in probability and almost sure order \(\frac{1}{2}-\) in the case of a cubic nonlinearity. We provide several numerical experiments illustrating the aforementioned results and the efficiency of the Lie-Trotter splitting scheme. Finally, we numerically investigate the possible blowup of solutions for some power-law nonlinearities.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35Q55 NLS equations (nonlinear Schrödinger equations)
65J08 Numerical solutions to abstract evolution equations

References:

[1] Belaouar, R.; de Bouard, A.; Debussche, A., Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 3, 1, 103-132 (2015) · Zbl 1314.35159
[2] Berg, A., Cohen, D., Dujardin, G.: Exponential integrators for the stochastic Manakov equation. arXiv, (2020)
[3] Berg, A., Cohen, D., Dujardin, G.: Numerical study of nonlinear Schrödinger equations with white noise dispersion. In preparation, (2021)
[4] Cohen, D.; Dujardin, G., Exponential integrators for nonlinear Schrödinger equations with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 5, 4, 592-613 (2017) · Zbl 1386.65036
[5] de Bouard, A.; Debussche, A., The nonlinear Schrödinger equation with white noise dispersion, J. Funct. Anal., 259, 5, 1300-1321 (2010) · Zbl 1193.35213 · doi:10.1016/j.jfa.2010.04.002
[6] de Bouard, A.; Gazeau, M., A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers, Ann. Appl. Probab., 22, 6, 2460-2504 (2012) · Zbl 1261.35156 · doi:10.1214/11-AAP839
[7] Debussche, A.; Di Menza, L., Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D, 162, 3-4, 131-154 (2002) · Zbl 0988.35156 · doi:10.1016/S0167-2789(01)00379-7
[8] Debussche, A.; Tsutsumi, Y., 1D quintic nonlinear Schrödinger equation with white noise dispersion, J. Math. Pures Appl. (9), 96, 4, 363-376 (2011) · Zbl 1234.35242 · doi:10.1016/j.matpur.2011.02.002
[9] Garnier, J.; Fatome, J.; Meur, G., Statistical analysis of pulse propagation driven by polarization-mode dispersion, J. Opt. Soc. Am. B, 19, 09 (2002) · doi:10.1364/JOSAB.19.001968
[10] Gazeau, M.: Analyse de modèles mathématiques pour la propagation de la lumière dans les fibres optiques en présence de biréfringence aléatoire. PhD thesis, Ecole Polytechnique, (2012)
[11] Gazeau, M., Numerical simulation of nonlinear pulse propagation in optical fibers with randomly varying birefringence, J. Opt. Soc. Am. B, 30, 9, 2443-2451 (2013) · doi:10.1364/JOSAB.30.002443
[12] Gazeau, M., Probability and pathwise order of convergence of a semidiscrete scheme for the stochastic Manakov equation, SIAM J. Numer. Anal., 52, 1, 533-553 (2014) · Zbl 1301.60075 · doi:10.1137/13090924X
[13] Hasegawa, A., Effect of polarization mode dispersion in optical soliton transmission in fibers, Physica D: Nonlinear Phenom., 188, 3, 241-246 (2004) · Zbl 1075.81033 · doi:10.1016/j.physd.2003.07.007
[14] Printems, J., On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal., 35, 6, 1055-1078 (2001) · Zbl 0991.60051 · doi:10.1051/m2an:2001148
[15] Trotter, HF, On the product of semi-groups of operators, Proc. Amer. Math. Soc., 10, 545-551 (1959) · Zbl 0099.10401 · doi:10.1090/S0002-9939-1959-0108732-6
[16] Wai, PKA; Menyak, CR, Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence, J. Lightwave Technol., 14, 148-157 (1996) · doi:10.1109/50.482256
[17] Zhang, Z.; Karniadakis, GE, Numerical methods for stochastic partial differential equations with white noise (2017), Cham: Springer, Cham · Zbl 1380.65021 · doi:10.1007/978-3-319-57511-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.