×

Symplectic groups over noncommutative algebras. (English) Zbl 1503.53111

The authors develop a special geometry whose main object is the symplectic group \(\mathrm{Sp}_2(A,\sigma)\) over a noncommutative algebra \(A\) with an anti-involution \(\sigma \). The group \(\mathrm{Sp}_2(A,\sigma )\) is the automorphism group of the symplectic form \[ \omega (x,y)=\sigma (x)^T\Omega y, \] where \(x,y\in A\times A\) and \[ \Omega = \begin{pmatrix} 0 & 1 \cr -1 & 0 \cr \end{pmatrix}. \] The authors consider mainly the case of a Hermitian algebra \(A\). In this case one introduces the unitary group \(\mathrm{U}_2(A,\sigma )\), the maximal compact subgroup \(\mathrm{KSp}_2(A,\sigma )\) of \(\mathrm{Sp}(A,\sigma)\), and the symmetric space \(\mathrm{Sp}_2(A,\sigma )/\mathrm{KSp}_2(A,\sigma )\). If \(A\) is a classical matrix algebra one recovers classical groups and classical symmetric spaces. If \(A=\mathrm{Mat}(n,\mathbb{R})\), and \(\sigma \) is the transposition, then \(\mathrm{Sp}_2(A,\sigma )\) is isomorphic to the classical group \(\mathrm{Sp}(2n,\mathbb{R})\). If \(A=\mathrm{Mat}(n,\mathbb{C})\), then one obtains \(\mathrm{U}(n,n)\). If \(A=\mathrm{Mat}(n,\mathbb{H})\), then one obtains \(\mathrm{SO}^*(4n)\). The corresponding symmetric spaces are classical tube-type Hermitian symmetric spaces. In the general case of a Hermitian algebra \(A\), one describes several geometric realizations of the symmetric space associated to \(\mathrm{Sp}_2(A,\sigma )\). For a classical matrix algebra one recovers classical geometric realizations. In this setting it is possible to define the Shilov boundary of the symmetric space associated to \(\mathrm{Sp}(A,\sigma )\).
Further one defines the complex extension \((A_{\mathbb{C}},\sigma _{\mathbb{C}})\) of \((A,\sigma )\) where \(A_{\mathbb{C}}=A+Ai\), and \(\sigma _{\mathbb{C}}(x+yi)=\sigma (x)-\sigma (y)i\). Then one considers the associated group \(\mathrm{Sp}_2(A_{\mathbb{C}},\sigma _{\mathbb{C}})\) and the associated symmetric space. If \(A\) is a classical matrix algebra, one obtains for \(\mathrm{Sp}_2(A_{\mathbb{C}},\sigma _{\mathbb{C}})\) the classical groups \(\mathrm{Sp}(2n,\mathbb{C})\), \(\mathrm{GL}(2n,\mathbb{C})\), \(\mathrm{O}(4n,\mathbb{C})\). Then it is possible to describe several geometric realizations of the symmetric space associated to \(\mathrm{Sp}_2(A_{\mathbb{C}},\sigma _{\mathbb{C}})\).

MSC:

53C35 Differential geometry of symmetric spaces
22E10 General properties and structure of complex Lie groups
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
15B30 Matrix Lie algebras

References:

[1] Abikoff, W., The bounded model for hyperbolic \(3\)-space and a quaternionic uniformization theorem, Math. Scand., 54, 1, 5-16 (1984) · Zbl 0555.30031 · doi:10.7146/math.scand.a-12036
[2] Alessandrini, D., Guichard, O., Rogozinnikov, E., Wienhard, A.: Noncommutative coordinates for symplectic representations. Mem. Amer. Math. Soc., to appear, (2022)
[3] Baes, M., Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras, Linear Algebra Appl., 422, 2-3, 664-700 (2007) · Zbl 1138.90018 · doi:10.1016/j.laa.2006.11.025
[4] Berenstein, A.; Retakh, V., Noncommutative double Bruhat cells and their factorizations, Int. Math. Res. Not., 2005, 8, 477-516 (2005) · Zbl 1071.22010 · doi:10.1155/IMRN.2005.477
[5] Berenstein, A.; Retakh, V., Lie algebras and Lie groups over noncommutative rings, Adv. Math., 218, 6, 1723-1758 (2008) · Zbl 1177.17005 · doi:10.1016/j.aim.2008.03.003
[6] Berenstein, A.; Retakh, V., Noncommutative marked surfaces, Adv. Math., 328, 1010-1087 (2018) · Zbl 1395.14001 · doi:10.1016/j.aim.2018.02.014
[7] Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1998). Translated from the 1987 French original, Revised by the authors · Zbl 0912.14023
[8] Clerc, JL; Ørsted, B., The Maslov index revisited, Transform. Groups, 6, 4, 303-320 (2001) · Zbl 1078.53076 · doi:10.1007/BF01237249
[9] Faraut, J., Korányi, A.: Analysis on symmetric cones. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1994). Oxford Science Publications · Zbl 0841.43002
[10] Gelfand, I.; Gelfand, S.; Retakh, V.; Wilson, RL, Quasideterminants, Adv. Math., 193, 1, 56-141 (2005) · Zbl 1079.15007 · doi:10.1016/j.aim.2004.03.018
[11] Guichard, O., Wienhard, A.: \( \theta \)-positivity. in preparation · Zbl 1404.22034
[12] Guichard, O., Wienhard, A.: Positivity and higher Teichmüller theory. In: European Congress of Mathematics, pages 289-310. Eur. Math. Soc., Zürich (2018) · Zbl 1404.22034
[13] Hanche-Olsen, H., Størmer, E.: Jordan operator algebras, volume 21 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1984) · Zbl 0561.46031
[14] Jacobson, N., Derivation algebras and multiplication algebras of semi-simple Jordan algebras, Ann. of Math., 2, 50, 866-874 (1949) · Zbl 0039.02802 · doi:10.2307/1969583
[15] Kaneyuki, S., The Sylvester’s law of inertia in simple graded Lie algebras, J. Math. Soc. Japan, 50, 3, 593-614 (1998) · Zbl 0939.17009 · doi:10.2969/jmsj/05030593
[16] Koufany, K.: Jordan algebras, geometry of Hermitian symmetric spaces and non-commutative Hardy spaces, volume 33 of Seminar on Mathematical Sciences. Keio University, Department of Mathematics, Yokohama (2005) · Zbl 1070.22010
[17] Lam, T.Y.: A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics. 2nd edn., Springer-Verlag, New York (2001) · Zbl 0980.16001
[18] Lion, G., Vergne, M.: The Weil representation, Maslov index and theta series, volume 6 of Progress in Mathematics. Birkhäuser, Boston, Mass. (1980) · Zbl 0444.22005
[19] Quinn, J.A.: A complex quaternion model for hyperbolic 3-space. arXiv:1701.06709, (2017)
[20] Rowen, L.H.: Graduate algebra: noncommutative view, volume 91 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2008) · Zbl 1182.16001
[21] Satake, I.: Algebraic structures of symmetric domains, volume 4 of Kanô Memorial Lectures. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J. (1980) · Zbl 0483.32017
[22] Wienhard, A.: An invitation to higher Teichmüller theory. Proceedings of the ICM 2018, (2018) · Zbl 1447.32023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.