×

Convex subspaces of Lie incidence geometries. (English) Zbl 1503.51005

Let \(\Gamma\) be a hexagonic Lie incidence structure, e.g.a long root geometry of a (thick irreducible) spherical Tits building; compare E. E. Shult [Points and lines. Characterizing the classical geometries. Berlin: Springer (2011; Zbl 1213.51001)]. The authors classify all convex subspaces of \(\Gamma\) under the assumption that \(\Gamma\) contains polar spaces of rank \(3\): then every convex subspace of \(\Gamma\) either corresponds to a residue of a flag in the associated spherical building, or it originates from “special” pairs of points (i.e.non-collinear pairs of points that are collinear to a unique common point). Moreover, similar classification results are proved for many other Lie incidence geometries, in particular for all projective and polar Grassmannians, and for exceptional Grassmannians of diameter at most \(3\); this generalizes Corollary 6.3 of [A. Kasikova, Adv. Geom. 9, No. 4, 541–561 (2009; Zbl 1183.51004)] and Corollary 4.2 of [M. Pankov, Bull. Belg. Math. Soc. - Simon Stevin 19, No. 2, 345–366 (2012; Zbl 1247.51007)].

MSC:

51E24 Buildings and the geometry of diagrams
Full Text: DOI

References:

[1] Peter Abramenko and Kenneth S. Brown. Buildings, volume 248 of Graduate Texts in Mathematics. Springer, New York, 2008. Theory and applications. doi: 10.1007/978-0-387-78835-7. · Zbl 1214.20033 · doi:10.1007/978-0-387-78835-7
[2] Francis Buekenhout and Arjeh M. Cohen. Diagram Geometry Related to Clas-sical Groups and Buildings, volume 57 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. · Zbl 1284.51001
[3] Springer-Verlag, Berlin, 2013. doi:10.1007/978-3-642-34453-4. · Zbl 1284.51001 · doi:10.1007/978-3-642-34453-4
[4] Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. · Zbl 0747.05073
[5] Springer-Verlag, Berlin, 1989. doi:10.1007/978-3-642-74341-2. · doi:10.1007/978-3-642-74341-2
[6] N. Bourbaki.Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scien-tifiques et Industrielles, No. 1337. Hermann, Paris, 1968. · Zbl 0186.33001
[7] P. J. Cameron. Dual polar spaces. Geom. Dedicata, 12:75-85, 1982. · Zbl 0473.51002
[8] Arjeh M. Cohen and Bruce N. Cooperstein. A characterization of some geometries of Lie type. Geom. Dedicata, 15(1):73-105, 1983. doi:10.1007/BF00146968. · Zbl 0541.51010 · doi:10.1007/BF00146968
[9] Ilaria Cardinali, Luca Giuzzi, and Antonio Pasini. On transparent embeddings of point-line geometries. J. Combin. Theory Ser A, 155:190-224, 2018. · Zbl 1382.51002
[10] Arjeh M. Cohen and Gábor Ivanyos. Root shadow spaces. European J. Combin., 28(5):1419-1441, 2007. doi:10.1016/j.ejc.2006.05.016. · Zbl 1117.51015 · doi:10.1016/j.ejc.2006.05.016
[11] Arjeh M. Cohen. An axiom system for metasymplectic spaces. Geom. Dedicata, 12(4):417-433, 1982. doi:10.1007/BF00147584. · Zbl 0511.51009 · doi:10.1007/BF00147584
[12] Arjeh M. Cohen. Inner ideals in lie algebras and spherical buildings. Indag. Math., 32(5):1115-1138, October 2021. · Zbl 1482.17041
[13] Anneleen De Schepper, N. S. Narasimha Sastry, and Hendrik Van Maldeghem. Buildings of exceptional type in buildings of type E 7 . Dissertationes Math., 573:1-80, 2022. · Zbl 1487.51007
[14] Anna Kasikova. Convex subspace closure of the point shadow of an apartment of a spherical building. Adv. Geom., 9:541-561, 2009. · Zbl 1183.51004
[15] Anna Kasikova. A characterization of point shadows of residues in building ge-ometries. Innov. Incidence Geom., 13:179-206, 2013. · Zbl 1298.51013
[16] Anna Kasikova and Ernest E. Shult. Point-line characterizations of Lie geometries. Adv. Geom., 2(2):147-188, 2002. doi:10.1515/advg.2002.004. · Zbl 0998.51002 · doi:10.1515/advg.2002.004
[17] Mark Pankov. Characterization of apartments in polar grassmannians. Bull. Belg. Math. Soc. Simon Stevin, 19:345-366, 2012. · Zbl 1247.51007
[18] Ernest E. Shult. Points and lines. Universitext. Springer, Heidelberg, 2011. Char-acterizing the classical geometries. doi:10.1007/978-3-642-15627-4. · Zbl 1213.51001 · doi:10.1007/978-3-642-15627-4
[19] Ernest E. Shult. Parapolar spaces with the “haircut” axiom. Innov. Incidence Geom., 15:265-286, 2017. doi:10.2140/iig.2017.15.265. · Zbl 1384.51004 · doi:10.2140/iig.2017.15.265
[20] Jacques Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics, Vol. 386. Springer-Verlag, Berlin-New York, 1974. · Zbl 0295.20047
[21] Hendrik Van Maldeghem and Magali Victoor. Combinatorial and geometric con-structions of spherical buildings. In A. Lo et al., editor, Surveys in Combinatorics 2019, volume 456 of London Math. Soc. Lect. Notes Ser., pages 237-265. Cam-bridge University Press, 2019. · Zbl 1479.51014
[22] Richard M. Weiss. The structure of spherical buildings. Princeton University Press, Princeton, NJ, 2003. · Zbl 1061.51011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.