×

Global attractors for a class of degenerate parabolic equations with memory. (English) Zbl 1503.35043

Weighted equations which contain a degenerated term with the weighted coefficient \(a(x)\) and a memory term in a bounded domain \(\Omega\) with smooth boundary \(\partial\Omega\) are considered in this paper. The authors first investigate the existence and uniqueness of weak solutions to the initial-boundary value problem of the above-mentioned equation under suitable assumptions on the weight function \(a(x)\). Based on the existence and uniqueness of weak solutions, the existence of a global attractor is obtained. The main contribution of this paper is to extend some known results to cases with memory.

MSC:

35B41 Attractors
35D30 Weak solutions to PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K58 Semilinear parabolic equations
35K65 Degenerate parabolic equations
Full Text: DOI

References:

[1] C. T. N. M. T. D. Anh Chuong Ke, Global attractors for the \(m\)-semiflow generated by a quasilinear degenerate parabolic equations, J. Math. Anal. Appl., 363, 444-453, 2010 · Zbl 1181.35138 · doi:10.1016/j.jmaa.2009.09.034
[2] C. T. P. Q. Anh Hung, Global attractors for a class of degenerate parabolic equations, Acta Math. Vietnam., 34, 213-231, 2009 · Zbl 1207.35066
[3] C. T. T. D. Anh Ke, Long-time behavior for quasilinear parabolic equations involving weighted \(p\)-Laplacian operators, Nonlinear Anal., 71, 4415-4422, 2009 · Zbl 1173.35024 · doi:10.1016/j.na.2009.02.125
[4] M. L. D. Annese Bisconti Catania, Exponential attractors for the 3D fractional-order Bardina turbulence model with memory and horizontal filtering, J. Dynam. Differential Equations, 34, 505-534, 2022 · Zbl 1485.35068 · doi:10.1007/s10884-020-09930-8
[5] S. V. Borini Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20, 263-277, 1999 · Zbl 0936.35037
[6] M. G. D. Campiti Metafune Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57, 1-36, 1998 · Zbl 0915.47029 · doi:10.1007/PL00005959
[7] T. T. Q. L. T. N. X. Chi Thuy Tu, Global attractor for a class of quasilinear degenerate parabolic equations with nonlinearity of arbitrary order, Commun. Korean Math. Soc., 36, 447-463, 2021 · Zbl 1477.35036 · doi:10.4134/CKMS.c190332
[8] I. I. Chueshov Lasiecka, Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differential Equations, 233, 42-86, 2007 · Zbl 1116.35017 · doi:10.1016/j.jde.2006.09.019
[9] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37, 297-308, 1970 · Zbl 0214.24503 · doi:10.1007/BF00251609
[10] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1. Physical Origins and Classical Methods, Springer-Verlag, Berlin, 1990. · Zbl 0683.35001
[11] L. C. Evans, Partial Differential Equations, \(2^{nd}\) edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[12] S. A. V. S. Gatti Miranville Pata Zelik, Attractors for semi-linear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38, 1117-1138, 2008 · Zbl 1179.35070 · doi:10.1216/RMJ-2008-38-4-1117
[13] C. V. A. Giorgi Pata Marzocchi, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differential Equations Appl., 5, 333-354, 1998 · Zbl 0912.45009 · doi:10.1007/s000300050049
[14] H. S. C. Li Ma Zhong, Long-time behavior for a class of degenerate parabolic equations, Discrete Contin. Dyn. Syst., 34, 2873-2892, 2014 · Zbl 1292.74015 · doi:10.3934/dcds.2014.34.2873
[15] X. C. F. Li Sun Zhou, Pullback attractors for a non-autonomous semilinear degenerate parabolic equation, Topol. Methods Nonlinear Anal., 47, 511-528, 2016 · Zbl 1368.35162 · doi:10.12775/TMNA.2016.011
[16] S. H. Ma Li, The long-time behavior of weighted \(p\)-Laplacian equations, Topol. Methods Nonlinear Anal., 54, 685-700, 2019 · Zbl 1439.35295 · doi:10.12775/TMNA.2019.064
[17] S. C. Ma Sun, Long-time behavior for a class of weighted equations with degeneracy, Discrete Contin. Dyn. Syst., 40, 1889-1902, 2020 · Zbl 1431.35080 · doi:10.3934/dcds.2020098
[18] M. T. Mohan, Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with “fading memory”, Evol. Equ. Control Theory, 11, 125-167, 2022 · Zbl 1498.37118 · doi:10.3934/eect.2020105
[19] V. A. Pata Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11, 505-529, 2001 · Zbl 0999.35014
[20] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. · Zbl 0383.35057
[21] X. L. C. Wang Yang Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362, 327-337, 2010 · Zbl 1180.35127 · doi:10.1016/j.jmaa.2009.09.029
[22] J. C. Yin Wang, Evolutionary weighted \(p\)-Laplacian with boundary degeneracy, J. Differential Equations, 237, 421-445, 2007 · Zbl 1133.35065 · doi:10.1016/j.jde.2007.03.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.