×

The fluid dynamics of propagating fronts with solutal and thermal coupling. (English) Zbl 1502.76128

Summary: We numerically explore the propagation of reacting fronts in a shallow and horizontal layer of fluid. We focus on fronts that couple with the fluid due to density differences between the products and reactants and also due to heat release from the reaction. We explore fronts where this solutal and thermal coupling is cooperative or antagonistic. We quantify the fluid motion induced by the front and investigate the interactions of the front with the fluid as it propagates through quiescent, cellular and chaotic flow fields. The solutal coupling induces an extended convection roll that travels with the front, the thermal coupling due to heat release from the reaction generates a pair of convection rolls that travels with the front, and when both couplings are present there is a complex signature of these contributions. The details of the front dynamics depend significantly upon the interactions of the front-induced flow field with the fluid ahead of the front.

MSC:

76V05 Reaction effects in flows
76E06 Convection in hydrodynamic stability
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

Nek5000
Full Text: DOI

References:

[1] Abel, M., Celani, A., Vergni, D. & Vulpiani, A.2001Front propagation in laminar flows. Phys. Rev. E64 (4), 046307.
[2] Abel, M., Cencini, M., Vergni, D. & Vulpiani, A.2002Front speed enhancement in cellular flows. Chaos12 (2), 481-488. · Zbl 1080.80501
[3] Bargteil, D. & Solomon, T.H.2012Barriers to front propagation in ordered and disordered vortex flows. Chaos22, 037103.
[4] Bodenschatz, E., Pesch, W. & Ahlers, G.2000Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech.32 (1), 709-778. · Zbl 0988.76033
[5] Budroni, M.A., Rongy, L. & De Wit, A.2012Dynamics due to combined buoyancy – and Marangoni-driven convective flows around autocatalytic fronts. Phys. Chem. Chem. Phys.14, 14619-14629.
[6] Budroni, M.A., Upadhyay, V. & Rongy, L.2019Making a simple \(a+b \rightarrow c\) reaction oscillate by coupling to hydrodynamic effect. Phys. Rev. Lett.122, 244502.
[7] Buell, J.C. & Catton, I.1986Wavenumber selection in large-amplitude axisymmetric convection. Phys. Fluids29, 23-30. · Zbl 0599.76045
[8] Chandrasekhar, S.1961Hydrodynamic and Hydromagnetic Stability. Dover.
[9] Chiam, K.-H., Paul, M.R., Cross, M.C. & Greenside, H.S.2003Mean flow and spiral defect chaos in Rayleigh-Bénard convection. Phys. Rev. E67, 056206. · Zbl 1098.76537
[10] Constantin, P., Kiselev, A., Oberman, A. & Ryzhik, L.2000Bulk burning rate in passive-reactive diffusion. Arch. Rat. Mech. Anal.154, 53-91. · Zbl 0979.76093
[11] Deville, M.O., Fischer, P.F. & Mund, E.H.2002High-Order Methods for Incompressible Fluid Flow. Cambridge University Press. · Zbl 1007.76001
[12] De Wit, A.2020Chemo-hydrodynamic patterns and instabilities. Annu. Rev. Fluid Mech.52, 531-555. · Zbl 1439.76173
[13] D’Hernoncourt, J., Zebib, A. & De Wit, A.2007On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts. Chaos17 (1), 013109. · Zbl 1159.37341
[14] Dominguez-Lerma, M.A., Ahlers, G. & Cannell, D.S.1984Marginal stability curve and linear growth rate for rotating Couette-Taylor flow and Rayleigh-Bénard convection. Phys. Fluids27 (4), 856-860. · Zbl 0541.76052
[15] Egolf, D.A., Melnikov, I.V. & Bodenschatz, E.1998Importance of local pattern properties in spiral defect chaos. Phys. Rev. Lett.80, 3228-3231.
[16] Field, R.J. & Burger, M.1985Oscillations and Traveling Waves in Chemical Systems. Wiley.
[17] Fischer, P.F.1997An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations. J. Comput. Phys.133, 84-101. · Zbl 0904.76057
[18] Fisher, R.A.1937The wave of advance of advantageous genes. Proc. Annu. Symp. Eugen. Soc.7, 355-369. · JFM 63.1111.04
[19] Hargrove, W.W., Gardner, R.H., Turner, M.G., Romme, W.H. & Despain, D.G.2000Simulating fire patterns in heterogeneous landscapes. Ecol. Model.135 (2-3), 243-263.
[20] Jacobson, M.Z.1999Fundamentals of Atmospheric Modeling. Cambridge University Press.
[21] Jarrige, N., Bou Malham, I., Martin, J., Rakotomalala, N., Salin, D. & Talon, L.2010Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells. Phys. Rev. E81, 066311.
[22] Karimi, A. & Paul, M.R.2012Quantifying spatiotemporal chaos in Rayleigh-Bénard convection. Phys. Rev. E85, 046201.
[23] Kolmogorov, A.N., Petrovskii, I.G. & Piskunov, N.S.1937A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bull. Moscow Univ. Math.1, 1-25.
[24] Masere, J., Vasquez, D.A., Edwards, B.F., Wilder, J.W. & Showalter, K.1994Nonaxisymmetric and axisymmetric convection in propagating reaction-diffusion fronts. J. Phys. Chem.98, 6505-6508.
[25] Mehrvarzi, C.O. & Paul, M.R.2014Front propagation in a chaotic flow field. Phys. Rev. E90, 012905.
[26] Morris, S.W., Bodenschatz, E., Cannell, D.S. & Ahlers, G.1993Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. Phys. Rev. Lett.71 (13), 2026-2029.
[27] Mukherjee, S.2020 Front propagation and feedback in convective flow fields. PhD thesis, Virginia Tech.
[28] Mukherjee, S. & Paul, M.R.2019Velocity and geometry of propagating fronts in complex convective flow fields. Phys. Rev. E99, 012213.
[29] Mukherjee, S. & Paul, M.R.2020Propagating fronts in fluids with solutal feedback. Phys. Rev. E101, 032214.
[30] Nagypal, I., Bazsa, G. & Epstein, I.R.1986Gravity-induced anisotropies in chemical waves. J. Am. Chem. Soc.108 (13), 3635-3640.
[31] 2021 See https://nek5000.mcs.anl.gov for more information about the NEK5000 solver.
[32] Nevins, T.D. & Kelley, D.H.2016Optimal stretching in advection-reaction-diffusion systems. Phys. Rev. Lett.117 (16), 164502.
[33] Nugent, C.R., Quarles, W.M. & Solomon, T.H.2004Experimental studies of pattern formation in a reaction-advection-diffusion system. Phys. Rev. Lett.93 (21), 218301.
[34] Paul, M.R., Einarsson, M.I., Fischer, P.F. & Cross, M.C.2007Extensive chaos in Rayleigh-Bénard convection. Phys. Rev. E75, 045203.
[35] Pocheau, A. & Harambat, F.2008Front propagation in a laminar cellular flow: shapes, velocities, and least time criterion. Phys. Rev. E77, 036304.
[36] Pojman, J.A. & Epstein, I.R.1990Convective effects on chemical waves. 1. Mechanisms and stability criteria. J. Phys. Chem.94, 4966-4972.
[37] Pojman, J.A., Epstein, I.R., Mcmanus, T.J. & Showalter, K.1991aConvective effects on chemical waves. 2. Simple convection in the iodate-arsenous acid system. J. Phys. Chem.95, 1299-1306.
[38] Pojman, J.A., Nagy, I.P. & Epstein, I.R.1991bConvective effects on chemical waves. 3. Multicomponent convection in the iron(II)-nitric acid system. J. Phys. Chem.95, 1306-1311.
[39] Pomeau, Y.2004Diffusion and reaction-diffusion in fast cellular flows. Chaos14 (3), 903-909. · Zbl 1080.37094
[40] Rongy, L. & De Wit, A.2009Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers. J. Chem. Phys.131, 184701.
[41] Rongy, L., Goyal, N., Meiburg, E. & De Wit, A.2007Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. J. Chem. Phys.127 (11), 114710.
[42] Rongy, L., Schuszter, G., Sinkó, Z., Tóth, T., Horváth, D., Tóth, A. & De Wit, A.2009Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally. Chaos19 (2), 023110.
[43] Russell, C.A., Smith, D.A., Waller, L.A., Childs, J.E. & Real, L.A.2004A priori prediction of disease invasion dynamics in a novel environment. Proc. R. Soc. Lond. B271, 21-25.
[44] Van Saarloos, W.2003Front propagation into unstable states. Phys. Rep.386, 29-222. · Zbl 1042.74029
[45] Schwartz, M.E. & Solomon, T.H.2008Chemical reaction fronts in ordered and disordered cellular flows with opposing winds. Phys. Rev. Lett.100, 028302.
[46] Sreenivasan, K.R., Ramshankar, R. & Meneveau, C.1989Mixing, entrainment, and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A421, 79-108. · Zbl 0674.76039
[47] Tiani, R., De Wit, A. & Rongy, L.2018Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts. Adv. Colloid Interface Sci.225, 76-83.
[48] Vasquez, D.A., Littley, J.M., Wilder, J.W. & Edwards, B.F.1994Convection in chemical waves. Phys. Rev. E50 (1), 280-284.
[49] Williams, F.A.1985Combustion Theory. Benjamin-Cummings.
[50] Wu, Y., Vasquez, D.A., Edwards, B.F. & Wilder, J.W.1995Convective chemical-wave propagation in the Belousov-Zhabotinsky reaction. Phys. Rev. E51, 1119-1127.
[51] Xin, J.2000Front propagation in heterogeneous media. SIAM Rev.42 (2), 161-230. · Zbl 0951.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.