×

Two-dimensional heat conduction in a rigid thermal conductor within the dual-phase-lag model by one-sided Fourier transform. (English) Zbl 1502.74029

MSC:

74F05 Thermal effects in solid mechanics
74E10 Anisotropy in solid mechanics
74H05 Explicit solutions of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Tzou, DY., A unified field approach for heat conduction from micro- to macro-scales, ASME J. Heat Transf, 117, 8-16 (1995)
[2] Tzou, DY., The generalized lagging response in small-scale and high-rate heating, Int J Heat Mass Transf, 38, 3231-3240 (1995)
[3] Tzou, DY., Experimental support for the lagging response in heat propagation, AIAA J Thermophys Heat Transf, 9, 686-693 (1995)
[4] Antaki, PJ., Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux, lnt J Heat Mass Transf, 41, 14, 2253-2258 (1998) · Zbl 0921.73036
[5] Xu, M.; Wang, L., Thermal oscillation and resonance in dual-phase-lagging heat conduction, Int J Heat Mass Transf, 45, 5, 1055-1061 (2002) · Zbl 0995.80005
[6] Wang, L.; Xu, M., Well-posedness of dual-phase lagging heat conduction equation: higher dimensions, Int J Heat Mass Transf, 45, 5, 1165-1171 (2002) · Zbl 0995.80004
[7] Jiang, F., Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse, Microscale Thermophys Eng, 6, 331-346 (2002)
[8] Fan, Q-M; Lu, W-Q., A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium, lnt J Heat Mass Transf, 45, 13, 2815-2821 (2002) · Zbl 1101.80006
[9] Dai, W.; Nassar, R., An approximate analytic method for solving 1D dual-phase-lagging heat transport equations, Int J Heat Mass Transf, 45, 1585-1593 (2002) · Zbl 0992.80015
[10] Dai, W.; Shen, L.; Nassar, R., A stable and convergent three-level finite difference scheme for solving a dual-phase-lagging heat transport equation in spherical coordinates, Int J Heat Mass Transf, 47, 1817-1825 (2004) · Zbl 1052.80010
[11] Vadasz, P., Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature, Int J Heat Mass Transf, 48, 2822-2828 (2005) · Zbl 1189.76613
[12] Quintanilla, R.; Racke, R., Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J Appl Math, 66, 3, 977-1001 (2006) · Zbl 1096.35082
[13] Han, P.; Tang, D.; Zhou, L., Numerical analysis of two-dimensional lagging thermal behavior under short-pulse-laser heating on surface, Int J Eng Sci, 44, 20, 1510-1519 (2006)
[14] Shen, B.; Zhang, P., Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model, Int J Heat Mass Transf, 51, 7-8, 1713-1727 (2008) · Zbl 1140.80368
[15] Chou, Y.; Yang, R-J., Application of CESE method to simulate non-Fourier heat conduction in finite medium with pulse surface heating, Int J Heat Mass Transf, 51, 13-14, 3525-3534 (2008) · Zbl 1148.80002
[16] Chou, Y.; Yang, R-J., Two-dimensional dual-phase-lag thermal behavior in single-/multi-layer structures using CESE method, Int J Heat Mass Transf, 52, 1-2, 239-249 (2009) · Zbl 1156.80314
[17] Majchrzak, E.; Mochnacki, B.; Suchy, JS., Numerical simulation of thermal processes proceeding in a multi-layered film subjected to ultrafast laser heating, J Theoret Appl Mech, 47, 2, 383-396 (2009)
[18] Ramadan, K., Semi-analytical solutions for the dual phase lag heat conduction in multilayered media, Int J Therm Sci, 48, 14-25 (2009)
[19] Ghazanfarian, J.; Abbassi, A., Effect of boundary phonon scattering on dual-phase-lag model to simulate micro- and nano-scale heat conduction, Int J Heat Mass Transf, 52, 3706-3711 (2009) · Zbl 1167.80328
[20] Lam, TT., A unified solution for several heat conduction models, Int J Heat Mass Transf, 56, 1-2, 653-666 (2013)
[21] Hu, K.; Chen, Z., Transient heat conduction analysis of a cracked half-plane using dual-phase-lag theory, Int J Heat Mass Transf, 62, 445-451 (2013)
[22] Fabrizio, M.; Franchi, F., Delayed thermal models: stability and thermodynamics, J Therm Stresses, 37, 2, 160-173 (2013)
[23] Singh, B., Wave propagation in dual-phase-lag anisotropic thermoelasticity, Cont Mech Thermodyn, 25, 675-683 (2013) · Zbl 1341.74086
[24] Singh, B.; Kumari, S.; Singh, J., Propagation of the Rayleigh wave in an initially stressed transversely isotropic dual-phase-lag magneto-thermoelastic half-space, J Eng Phys Thermophys, 87, 6, 1539-1547 (2014)
[25] Askarizadeh, H.; Ahmadikia, H., Analytical analysis of the dual-phase-lag heat transfer equation in a finite slab with periodic surface heat flux, Int J Eng, 27, 6, 971-978 (2014)
[26] Zhang, MK; Cao, BY; Guo, YC., Numerical studies on damping of thermal waves, Int J Thermal Sci, 84, 9-20 (2014)
[27] Julius, S.; Leizeronok, B.; Cukurel, B., Nonhomogeneous dual-phase-lag heat conduction problem: analytical solution and select case studies, J Heat Transf, 140 (2018)
[28] Liu, Y.; Ling Li, L.; Lou, Q., A hyperbolic lattice Boltzmann method for simulating non-Fourier heat conduction, Int J Heat Mass Transf, 131, 772-780 (2019)
[29] Gandolfi, M.; Benetti, G.; Glorieux, C., Accessing temperature waves: a dispersion relation perspective, Int J Heat Mass Transf, 143 (2019)
[30] Majchrzak, E.; Mochnacki, B., Second-order dual phase lag equation. modeling of melting and resolidification of thin metal film subjected to a laser pulse, Math, 8, 999 (2020)
[31] Shuler, SF; Advani, SG; Kaliakin, VN., Transient analysis and measurement of anisotropic heat conduction in transversely isotropic composite materials, J Compos Mat, 33, 7, 594-613 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.