×

Equilateral chains and cyclic central configurations of the planar five-body problem. (English) Zbl 1502.70027

Summary: Central configurations and relative equilibria are an important facet of the study of the \(N\)-body problem, but become very difficult to rigorously analyze for \(N>3\). In this paper, we focus on a particular but interesting class of configurations of the five-body problem: the equilateral pentagonal configurations, which have a cycle of five equal edges. We prove a variety of results concerning central configurations with this property, including a computer-assisted proof of the finiteness of such configurations for any positive five masses with a range of rational-exponent homogeneous potentials (including the Newtonian case and the point-vortex model), some constraints on their shapes, and we determine some exact solutions for particular \(N\)-body potentials.

MSC:

70F10 \(n\)-body problems

References:

[1] Albouy, A., Integral manifolds of the \(N\)-body problem, Invent. Math., 114, 463-488 (1993) · Zbl 0801.70008
[2] Albouy, A.; Chenciner, A., Le problème des n corps et les distances mutuelles, Invent. Math., 131, 1, 151-184 (1997) · Zbl 0919.70005
[3] Albouy, A.; Kaloshin, V., Finiteness of central configurations of five bodies in the plane, Ann. Math., 176, 1, 535-588 (2012) · Zbl 1362.70014
[4] Alvarez-Ramírez, M.; Gasull, A.; Llibre, J., On the equilateral pentagonal central configurations, Commun. Nonlinear Sci. Numer. Simul., 112 (2022) · Zbl 1513.70041
[5] Andoyer, H., Sur l’équilibre relatif de n corps, Bull. Astron., 23, 50-59 (1906)
[6] Aref, H.; Rott, N.; Thomann, H., Gröbli’s solution of the three-vortex problem, Annu. Rev. Fluid Mech., 24, 1, 1-21 (1992) · Zbl 0825.76002
[7] Bernshtein, DN, The number of roots of a system of equations, Func. Anal. Appl., 9, 3, 1-4 (1975) · Zbl 0328.32001
[8] Brumberg, VA, Permanent configurations in the problem of four bodies and their stability, Sov. Astron., 1, 57-79 (1957)
[9] Cabral, HE, On the integral manifolds of the \(n\)-body problem, Invent. Math., 20, 1, 59-72 (1973) · Zbl 0262.70014
[10] Celli, M.: Sur les mouvements homographiques de \(n\) corps associés à des masses de signe quelconque, le cas particulier où la somme des masses est nulle, et une application à la recherche de choréographies perverse. Ph.D. thesis, Université Paris 7, France (2005)
[11] Chazy, J., Sur certaines trajectoires du problème des n corp, Bull. Astronom., 35, 321-389 (1918) · JFM 46.1385.07
[12] Chen, K-C; Hsiao, J-S, Strictly convex central configurations of the planar five-body problem, Trans. AMS, 370, 3, 1907-1924 (2018) · Zbl 1456.70026
[13] Cornelio, JL; Alvarez-Ramírez, M.; Cors, JM, Central configurations in the five-body problem: rhombus plus one, Qual. Theory Dyn. Syst., 20, 2, 1-13 (2021) · Zbl 1498.70018
[14] Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-2-1—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2021)
[15] ElBialy, MS, Collision singularities in celestial mechanics, SIAM J. Math. Anal., 21, 6, 1563-1593 (1990) · Zbl 0709.70007
[16] Euler, L., De motu rectilineo trium corporum se mutuo attrahentium, Novi Commun. Acad. Sci. Imp. Petrop., 11, 144-151 (1767)
[17] Gidea, M.; Llibre, J., Symmetric planar central configurations of five bodies: Euler plus two, Cel. Mech. Dyn. Astron., 106, 1, 89 (2010) · Zbl 1223.70031
[18] Hampton, M., Stacked central configurations: new examples in the planar five-body problem, Nonlinearity, 18, 5, 2299-2304 (2005) · Zbl 1076.70007
[19] Hampton, M., Finiteness of kite relative equilibria in the Five-Vortex and Five-Body problems, Qual. Theory Dyn. Syst., 8, 2, 349-356 (2010) · Zbl 1195.70020
[20] Hampton, M.; Jensen, AN, Finiteness of spatial central configurations in the five-body problem, Cel. Mech. Dyn. Astron., 109, 4, 321-332 (2011) · Zbl 1270.70038
[21] Hampton, M.; Jensen, AN, Finiteness of relative equilibria in the planar generalized \(n\)-body problem with fixed subconfigurations, J. Geom. Mech., 7, 35-42 (2015) · Zbl 1367.70027
[22] Hampton, M.; Moeckel, R., Finiteness of relative equilibria of the four-body problem, Invent. Math., 163, 2, 289-312 (2005) · Zbl 1083.70012
[23] Hampton, M.; Moeckel, R., Finiteness of stationary configurations of the four-vortex problem, Trans. AMS, 361, 3, 1317-1332 (2009) · Zbl 1161.76011
[24] Hampton, M.; Roberts, GE; Santoprete, M., Relative equilibria in the four-body problem with two pairs of equal vorticities, J. Nonlinear Sci., 24, 39-92 (2014) · Zbl 1302.76042
[25] Helmholtz, H.: Uber integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. Crelle’s J. Math. 55 (1858), 25-55, English translation by P. G. Tait, P.G., On the integrals of the hydrodynamical equations which express vortex-motion. Philos. Mag. 485-451 (1867)
[26] Jensen, A.N.: Gfan, a software system for Gröbner fans and tropical varieties (2011). http://home.imf.au.dk/jensen/software/gfan/gfan.html
[27] Khovanskii, AG, Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl., 12, 1, 38-46 (1978) · Zbl 0406.14035
[28] Kirchhoff, G.: Vorlesungen über mathematische physik. B.G. Teubner (1883)
[29] Kulevich, JL; Roberts, GE; Smith, CJ, Finiteness in the planar restricted four-body problem, Qual. Theory Dyn. Syst., 8, 2, 357-370 (2009) · Zbl 1195.70021
[30] Kushnirenko, AG, Newton polytopes and the Bezout theorem, Funct. Anal. Appl., 10, 3, 233-235 (1976) · Zbl 0341.32001
[31] Lagrange, J.L.: Essai sur le problème des trois corps, Œuvres, vol. 6. Gauthier-Villars, Paris (1772)
[32] Laura, E., Sulle equazioni differenziali canoniche del moto di un sistema di vortici elementari rettilinei e paralleli in un fluido incomprensibile indefinito, Atti della Reale Accad. Torino, 40, 296-312 (1905) · JFM 36.0799.01
[33] Leandro, ESG, Structure and stability of the rhombus family of relative equilibria under general homogeneous forces, J. Dyn. Differ. Equ., 31, 2, 933-958 (2019) · Zbl 1456.70027
[34] Lee, TL; Santoprete, M., Central configurations of the five-body problem with equal masses, Cel. Mech. Dyn. Astron., 104, 369-381 (2009) · Zbl 1204.70013
[35] Long, Y.; Sun, S., Four-body central configurations with some equal masses, Arch. Ration. Mech. Anal., 162, 1, 25-44 (2002) · Zbl 1033.70004
[36] Maclagan, D.; Sturmfels, B., Introduction to Tropical Geometry (2015), Providence: AMS, Providence · Zbl 1321.14048
[37] MacMillan, WD; Bartky, W., Permanent configurations in the problem of four bodies, Trans. Am. Math. Soc., 34, 838-875 (1932) · JFM 58.0826.02
[38] Moczurad, M.; Zgliczyński, P., Central configurations in planar n-body problem with equal masses for \(n=5,6,7\), Cel. Mech. Dyn. Astron., 131, 1-28 (2019) · Zbl 1451.70024
[39] Moeckel, R., Orbits of the three-body problem which pass infinitely close to triple collision, Am. J. Math., 103, 6, 1323-1341 (1981) · Zbl 0475.70008
[40] Moeckel, R., Chaotic dynamics near triple collision, Arch. Ration. Mech. Anal., 107, 1, 37-69 (1989) · Zbl 0697.70021
[41] Moeckel, R., On central configurations, Math. Z., 205, 1, 499-517 (1990) · Zbl 0684.70005
[42] Moeckel, R., Relative equilibria with clusters of small masses, J. Dyn. Differ. Equ., 9, 507-533 (1997) · Zbl 0888.70011
[43] Moeckel, R., A proof of Saari’s conjecture for the three-body problem in \(r^d\), Discrete Contin. Dyn. Syst. Ser. S, 1, 4, 631-646 (2008) · Zbl 1162.70011
[44] Moeckel, R., Central Configurations, Periodic Orbits, and Hamiltonian Systems (2015), New York: Springer, New York
[45] Moulton, FR, The straight line solutions of the problem of N bodies, Ann. Math., 12, 1, 1-17 (1910) · JFM 41.0794.02
[46] Oliveira, A.; Vidal, C., Stability of the rhombus vortex problem with a central vortex, J. Dyn. Differ. Equ., 32, 4, 2109-2123 (2020) · Zbl 1454.37085
[47] Perez-Chavela, E.; Santoprete, M., Convex four-body central configurations with some equal masses, Arch. Ration. Mech. Anal., 185, 3, 481-494 (2007) · Zbl 1117.70014
[48] Rayl, A.S.: Stability of permanent configurations in the problem of four bodies. Ph.D. thesis, University of Chicago, Chicago (1939)
[49] Roberts, GE, A continuum of relative equilibria in the five-body problem, Physica D, 127, 3-4, 141-145 (1999) · Zbl 0955.70009
[50] Saari, Donald G.; Hulkower, Neal D., On the manifolds of total collapse orbits and of completely parabolic orbits for the n-body problem, J. Differ. Equ., 41, 1, 27-43 (1981) · Zbl 0475.70010
[51] Smale, S., Mathematical problems for the next century, Math. Intell., 20, 7-15 (1998) · Zbl 0947.01011
[52] The Sage Developers: Sage mathematics software (Version 9.2) (2020). http://www.sagemath.org
[53] Williams, WL, Permanent configurations in the problem of five bodies, Trans. AMS, 44, 3, 563-579 (1938) · JFM 64.0805.01
[54] Wintner, A., The Analytical Foundations of Celestial Mechanics (1941), Princeton: Princeton University Press, Princeton · Zbl 0026.02302
[55] Xia, Z., Central configurations with many small masses, J. Differ. Equ., 91, 168-179 (1991) · Zbl 0724.70015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.