×

Using normal forms to study Oterma’s transition in the planar RTBP. (English) Zbl 1502.70021

Summary: Comet 39P/Oterma is known to make fast transitions between heliocentric orbits outside and inside the orbit of Jupiter. In this note the dynamics of Oterma is quantitatively studied via an explicit computation of high order Birkhoff normal forms at the points \(L_1\) and \(L_2\) of the Planar Restricted Three-Body Problem. A previous work [W. S. Koon et al., Celest. Mech. Dyn. Astron. 81, No. 1–2, 27–38 (2001; Zbl 1013.70011)] has shown the existence of heteroclinic connections between the neigbourhood of \(L_1\) and \(L_2\) which provide paths for this transition. Here we combine real data on the motion of Oterma with normal forms to compute the invariant objects that are responsible for this transition.

MSC:

70F07 Three-body problems
70K45 Normal forms for nonlinear problems in mechanics
37N05 Dynamical systems in classical and celestial mechanics

Citations:

Zbl 1013.70011

Software:

AUTO; HomCont; Taylor
Full Text: DOI

References:

[1] A. Deprit, Canonical transformations depending on a small parameter, Celestial Mech., 1, 12-30 (1969/1970) · Zbl 0172.26002 · doi:10.1007/BF01230629
[2] G. Duarte and À. Jorba, Invariant manifolds of tori near \({L}_1\) and \({L}_2\) in the Planar Elliptic RTBP, In preparation, 2022.
[3] G. Duarte and À. Jorba, Modelling Oterma’s transition using the Planar Elliptic RTBP, In preparation, 2022.
[4] E. J. Doedel, R. C. Paenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, Auto 2000: Continuation and bifurcation software for ordinary differential equations (with homcont), 1997.
[5] L. Dieci; J. Rebaza, Point-to-periodic and periodic-to-periodic connections, BIT Numerical Mathematics, 44, 41-62 (2004) · Zbl 1052.65113 · doi:10.1023/B:BITN.0000025093.38710.f6
[6] G. Gómez, J. Llibre, R. Martínez and C. Simó, Dynamics and Mission Design Near Libration Points. Vol. I, Fundamentals: The Case of Collinear Libration Points, World Scientific Monograph Series in Mathematics, 2. World Scientific Publishing Co., Inc., River Edge, NJ, 2001. · Zbl 0971.70003
[7] N. W. Harris; M. E. Bailey, Dynamical evolution of cometary asteroids, Mon. Not. R. Astron. Soc., 297, 1227-1236 (1998) · doi:10.1046/j.1365-8711.1998.01683.x
[8] G. Hori, Theory of general perturbations with unspecified canonical variables, Publications of the Astronomical Society of Japan, 18, 287-296 (1966)
[9] À. Jorba, A methodology for the numerical computation of normal forms, centre manifolds and first integrals of {H}amiltonian systems, Exp. Math., 8, 155-195 (1999) · Zbl 0983.37107 · doi:10.1080/10586458.1999.10504397
[10] À. Jorba; J. Masdemont, Dynamics in the centre manifold of the collinear points of the restricted three body problem,, Phys. D, 132, 189-213 (1999) · Zbl 0942.70012 · doi:10.1016/S0167-2789(99)00042-1
[11] À. Jorba and B. Nicolás, Transport and invariant manifolds near \({L}_3\) in the Earth-Moon bicircular model, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105327, 19 pp. · Zbl 1476.70019
[12] À. Jorba; M. Zou, A software package for the numerical integration of ODEs by means of high-order Taylor methods, Exp. Math., 14, 99-117 (2005) · Zbl 1108.65072 · doi:10.1080/10586458.2005.10128904
[13] http://ssd.jpl.nasa.gov/horizons.html-.
[14] W. S. Koon; M. W. Lo; J. E. Marsden; S. D. Ross, Resonance and capture of Jupiter comets, Celest. Mech. Dyn. Astron., 81, 27-38 (2001) · Zbl 1013.70011 · doi:10.1023/A:1013398801813
[15] B. Krauskopf; H. M. Osinga; E. J. Doedel; M. E. Henderson; J. Guckenheimer; A. Vladimirsky; M. Dellnitz; O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15, 763-791 (2005) · Zbl 1086.34002 · doi:10.1142/S0218127405012533
[16] K. R. Meyer and D. Offin, Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, \(3^{rd}\) edition, Applied Mathematical Sciences, 90. Springer, Cham, 2017. · Zbl 1372.70002
[17] J. Moser, On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math., 11, 257-271 (1958) · Zbl 0082.08003 · doi:10.1002/cpa.3160110208
[18] K. Ohtsuka; T. Ito; M. Yoshikawa; D. J. Asher; H. Arakida, Quasi-Hilda comet 147P/Kushida-Muramatsu - Another long temporary satellite capture by Jupiter, Astron. Astrophys., 489, 1355-1362 (2008)
[19] D. L. Richardson, A note on a Lagrangian formulation for motion about the collinear points, Celestial Mech., 22, 231-236 (1980) · Zbl 0443.70009 · doi:10.1007/BF01229509
[20] A. Souza; M. Tao, Metastable transitions in inertial Langevin systems: What can be different from the overdamped case?, European J. Appl. Math., 30, 830-852 (2019) · Zbl 1488.60151 · doi:10.1017/S0956792518000414
[21] M. Tao, Hyperbolic periodic orbits in nongradient systems and small-noise-induced metastable transitions, Phys. D: Nonlinear Phenomena, 363, 1-17 (2018) · Zbl 1375.60103 · doi:10.1016/j.physd.2017.10.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.