×

On the biharmonic heat equation on complete Riemannian manifolds. (English) Zbl 1502.58005

The author studies entire solutions of the biharmonic heat equation on complete Riemannian manifolds without boundary. Uniqueness criteria for the Cauchy problem are derived in this paper. Moreover, the authors derive exponential decay estimates for the biharmonic heat kernel in terms of the Ricci curvature. Result can be viewed as a “maximum principle” for the biharmonic heat equation.

MSC:

58J35 Heat and other parabolic equation methods for PDEs on manifolds
31C12 Potential theory on Riemannian manifolds and other spaces
35K10 Second-order parabolic equations
58E20 Harmonic maps, etc.

References:

[1] Cheeger, J.; Colding, T., Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math. 2nd Ser., 144, 1, 189-237 (1996) · Zbl 0865.53037 · doi:10.2307/2118589
[2] Colding, TH; Minicozzi, WP II, Harmonic functions with polynomial growth, J. Differ. Geom., 46, 1, 1-77 (1997) · Zbl 0914.53027 · doi:10.4310/jdg/1214459897
[3] Gazzola, F.; Grunau, H-C, Eventual local positivity for a biharmonic heat equation in \({\mathbb{R}}^n\), Discret. Contin. Dyn. Syst. Ser. S, 1, 1, 83-87 (2008) · Zbl 1153.35304
[4] Gazzola, F.; Grunau, H-C, sSome new properties of biharmonic heat kernels, Nonlinear Anal., 70, 8, 2965-2973 (2009) · Zbl 1170.35440 · doi:10.1016/j.na.2008.12.039
[5] Grigor’yan, A., Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Am. Math. Soc. (N.S.), 36, 2, 135-249 (1999) · Zbl 0927.58019 · doi:10.1090/S0273-0979-99-00776-4
[6] Grigor’yan, A., On stochastically complete manifolds, Soviet Math. Dokl., 34, 310-313 (1987) · Zbl 0632.58041
[7] Grigor’yan, A., Heat Kernel and Analysis on Manifolds (2009), Providence, RI, Boston, MA: American Mathematical Society, International Press, Providence, RI, Boston, MA · Zbl 1206.58008
[8] He, F.; Lee, M-C, On the uniqueness for the heat equation on complete Riemannian manifolds, Ann. Global Anal. Geom., 58, 4, 497-504 (2020) · Zbl 1453.53045 · doi:10.1007/s10455-020-09738-1
[9] Karp, L., Li, P.: The heat equation on complete Riemannian manifolds, unpublished
[10] Koch, H.; Lamm, T., Geometric flows with rough initial data, Asian J. Math., 16, 2, 209-235 (2012) · Zbl 1252.35159 · doi:10.4310/AJM.2012.v16.n2.a3
[11] Kuwert, E.; Schatzle, R., Gradient flow for the Willmore functional, Commun. Anal. Geom., 10, 2, 307-339 (2002) · Zbl 1029.53082 · doi:10.4310/CAG.2002.v10.n2.a4
[12] Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. (Russian), Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23 American Mathematical Society, Providence, RI (1968) · Zbl 0174.15403
[13] Li, P.; Yau, S-T, On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 3-4, 153-201 (1986) · Zbl 0611.58045 · doi:10.1007/BF02399203
[14] Sallof-Coste, L., Uniformly elliptic operators on Riemannian manifolds, J. Differ. Geom., 36, 417-450 (1992) · Zbl 0735.58032
[15] Sario, L.; Nakai, M.; Wang, C.; Chung, LO, Classification Theory of Riemannian Manifolds. Harmonic, Quasiharmonic and Biharmonic Functions (1977), Berlin-New York: Springer-Verlag, Berlin-New York · Zbl 0355.31001 · doi:10.1007/BFb0064417
[16] Schoen, R., Yau, S.-T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA (1994). ISBN 1-57146-012-8 · Zbl 0830.53001
[17] Simon, M.; Wheeler, G., Some local estimates and a uniqueness result for the entire biharmonic heat equation, Adv. Calc. Var., 9, 1, 77-99 (2016) · Zbl 1336.35180
[18] Tichonov, AN, Uniqueness theorems for the equation of heat conduction, (in Russian), Mat. Sbornik, 42, 199-215 (1935) · Zbl 0012.35501
[19] Wang, C., Well-posedness for the heat flow of biharmonic maps with rough initial data, J. Geom. Anal., 22, 1, 223-243 (2012) · Zbl 1264.35135 · doi:10.1007/s12220-010-9195-3
[20] Yau, S-T, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Math. J., 25, 659-670 (1976) · Zbl 0335.53041 · doi:10.1512/iumj.1976.25.25051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.