×

Regularity and stability of invariant measures for diffusion processes under synthetic lower Ricci curvature bounds. (English) Zbl 1502.53068

The article in review establishes the construction of diffusion processes and studies the existence of invariant measures and the uniqueness of the densities under the assumption that \(\mu\) has the density \(\rho\) with respect to \(m\).
For a given measure space \((X,m)\) and a strongrly continuous semigroup \(\{T_t\}\) on \(L^p(X,m)\), a measure \(\mu = \rho m\) with \(\rho \in L^q(X,m)\) and \((1/p + 1/q = 1)\) is said to be an invariant measure for \(\{T_t\}\) if \[ \int_X T_t f \,d\mu = \int_X f\,d\mu,\quad \forall f \in L^p(X,m),\,\forall t \geq 0. \] Invariant measures can also be characterized in terms of the infinitesimal generator.
The existence, uniqueness, and regularity of invariant measures are fundamental questions for the theory of Markov processes and for the theory of elliptic PDEs. The article in review studies invariant measures and the related elliptic PDE on non-smooth metric measure spaces satisfying synthetic lower Ricci curvature bounds (RCD). The infinitesimal generator condidered int the article in review can be written in the following form: \[ L = \frac{1}{2} \Delta + \boldsymbol{b}. \] Here \(\Delta\) denotes the Laplacian and \(\boldsymbol{b}\) denotes a derivation operator which is the first-order differential operator.
The main result of the article is as follows: The Sobolev regularity of density \(\rho\) and the gradient estimate of \(\rho\) are obtained whenever \(\mu = \rho m\) satisfies the following equation: \[ \int_X \left(\frac{1}{2} \Delta + \boldsymbol{b}\right) (\phi) d \mu = 0, \quad \forall \mu \in \text{TestF}(X). \] An application of the Sobolev regularity is given and answers a question on the symmetrizability of the semigroup \(\{T_t\}\) on \(L^2(X,m)\) on RCD spaces with \(m(X) < \infty\): When is \(\{T_t\}\) symmetrizable? The article gives the following answer: \(\{T_t\}\) is symmetrizable by a measure \(\mu = \rho m\) with density \(\rho \in L^2(X,m)\) if and only if there is a Lipschitz continuous function \(f\) with \(f \in L^2(m)\) so that \(\boldsymbol{b}(\cdot) = \langle \nabla f, \nabla \cdot \rangle\).

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
35J15 Second-order elliptic equations

References:

[1] S. ALBEVERIO, V. I. BOGACHEV and M. RÖCKNER, On uniqueness of invariant measures for finite-and infinite-dimensional diffusions, Comm. Pure Appl. Math. 52 (1999), 325-362. · Zbl 0998.60064
[2] L. AMBROSIO, N. GIGLI, A. MONDINO and T. RAJALA, Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure, Trans. Amer. Math. Soc. 367 (2015), 4661-4701. · Zbl 1317.53060
[3] L. AMBROSIO, N. GIGLI and G. SAVARÉ, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab. 43 (2015), 339-404. · Zbl 1307.49044
[4] L. AMBROSIO, N. GIGLI and G. SAVARÉ, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math. 195 (2014), 289-391. · Zbl 1312.53056
[5] L. AMBROSIO, N. GIGLI and G. SAVARÉ, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014), 1405-1490. · Zbl 1304.35310
[6] L. AMBROSIO and S. HONDA, New stability results for sequences of metric measure spaces with uniform Ricci bounds form below, In: “Measure Theory in Non-smooth Spaces”, N. Gigli (ed.), De Gruyter, New York, 2016, 1-51. · Zbl 1485.53051
[7] L. AMBROSIO, A. MONDINO and G. SAVARÉ, On the Bakry-Émery condition, the gra-dient estimates and the Local-to-Global property of RCD ⇤ .K; N / metric measure spaces, J. Geom. Anal. 26 (2016), 24-56. · Zbl 1335.35088
[8] L. AMBROSIO, G. SAVARÉ and L. ZAMBOTTI, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields 145 (2009), 517-564. · Zbl 1235.60105
[9] L. AMBROSIO, F. STRA and D. TREVISAN, Weak and strong convergence of derivations and stability of flows with respect to MGH convergence, J. Funct. Anal. 272 (2017), 1182-1229. · Zbl 1355.53033
[10] D. BAKRY, I. GENTIL and M. LEDOUX “Analysis and Geometry of Markov Diffusion Operators Analysis and geometry of Markov diffusion operators”, Grundlehren der Mathe-matischen Wissenschaften, Vol. 348, Springer, Cham, 2004.
[11] L. BEZNEA, I. CIMPEAN and M. RÖCKNER, A new approach to the existence of invariant measures for Markovian semigroups, Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), 977-1000. · Zbl 1421.37010
[12] J. BERTRAND, C. KETTERER, I. MONDELLO and T. RICHARD, Stratified spaces and synthetic Ricci curvature bounds, Ann. Inst. Fourier (Grenoble) 71 (2021), 123-173. · Zbl 1481.53051
[13] V. I. BOGACHEV, N. V. KRYLOV and M. RÖCKNER, Regularity of invariant measures: the case of non-constant diffusion part, J. Funct. Anal. 138 (1996), 223-242. · Zbl 0929.60039
[14] V. I. BOGACHEV, N. V. KRYLOV and M. RÖCKNER, Elliptic regularity and essential self-adjointness of Dirichlet operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (4) (1997), 451-461. · Zbl 0901.35017
[15] V. I. BOGACHEV, N. V. KRYLOV and M. RÖCKNER, On regularity of transition probabili-ties and invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential Equations 26 (2001), 2037-2080. · Zbl 0997.35012
[16] V. I. BOGACHEV, N. V. KRYLOV and M. RÖCKNER, Differentiability of the invariant measures and transition probabilities of singular diffusions, Dokl. Ross. Akad. Nauk 376 (2001), 151-154; English translation in Dokl. Math. 63 (2001). · Zbl 1043.60065
[17] V. I. BOGACHEV, N. V. KRYLOV and M. RÖCKNER, Elliptic equations for measures: regularity and global bounds of densities., J. Math. Pures Appl. 85 (2006), 743-757. · Zbl 1206.35242
[18] V. I. BOGACHEV, N. V. KRYLOV, M. RÖCKNER and S.V. SHAPOSHNIKOV, “Fokker-Planck-Kolmogorov Equations,” Amer. Math. Soc., Rhode Island, Providence, 2015. · Zbl 1342.35002
[19] V. I. BOGACHEV and M. RÖCKNER, Regularity of invariant measures on finite and infinite dimensional spaces and applications, J. Funct. Anal. 133 (1995), 168-223. · Zbl 0840.60069
[20] V. I. BOGACHEV and M. RÖCKNER, A generalization of Hasminskiis theorem on existence of invariant measures for locally integrable drifts, Teor. Veroyatnost. i Primenen 45 (2000), 417-436; English translation in Theory Probab. Appl. 45. · Zbl 1004.60061
[21] V. I. BOGACHEV and M. RÖCKNER, Elliptic equations for measures on infinite-dimensional spaces and applications, Probab. Theory Relat. Fields 120 (2001), 445-496. · Zbl 1086.35114
[22] V. I. BOGACHEV, M. RÖCKNER and F. Y. WANG, Elliptic equations for invariant mea-sures on finite and infinite dimensional manifolds, J. Math. Pures Appl. 80 (2001), 177-221. · Zbl 0996.58023
[23] V. I. BOGACHEV, M. RÖCKNER and W. STANNAT, Uniqueness of invariant measures and essential maximal dissipativity of diffusion operators on L 1 , In: Proceeding of Col-loquium “Infinite Dimensional Stochastic Analysis (11-12 February 1999, Amsterdam)”, Royal Netherlands Academy, Amsterdam, 2000, 39-54. · Zbl 0989.60072
[24] V. I. BOGACHEV, M. RÖCKNER and T. S. ZHANG, Existence and uniqueness of invariant measures: an approach via sectorial forms, Appl. Math, Optim. 41 (2000), 87-109. · Zbl 0953.31003
[25] F. CAVALLETTI and E. MILMAN, The globalization theorem for the curvature dimension condition, Invent. Math. 226 (2021), 1-137. · Zbl 1479.53049
[26] J. CHEEGER, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1997), 428-517. · Zbl 0942.58018
[27] J. CHEEGER and T. H. COLDING, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), 406-480. · Zbl 0902.53034
[28] E. B. DAVIES, “Heat Kernels and Spectral Theory”, Cambridge Tracts in Math., Vol. 92, Cambridge Univ. Press, Cambridge, 1989. · Zbl 0699.35006
[29] J. D. DEUSCHEL and D. W. STROOCK, “Large Deviations”, Academic Press, San Diego 1989. · Zbl 0682.60018
[30] M. ERBAR, K. KUWADA and K. -TH. STURM, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015), 993-1071. · Zbl 1329.53059
[31] P. FITZSIMMONS, Drift transformations of symmetric diffusions, and duality, Infin. Di-mens. Anal. Quantum Probab. Relat. Top. 10 (2007), 613-631. · Zbl 1149.60048
[32] K. FUKAYA, Collapsing of Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math. 87 (1987), 517-547. · Zbl 0589.58034
[33] M. FUKUSHIMA, Y. OSHIMA and M. TAKEDA, “Dirichlet Forms and Symmetric Markov Processes”, 2nd revised and extended edition, De Gruyter Studies in Mathematics, Vol. 19, Walter de Gruyter & Co., Berlin, 2011. · Zbl 1227.31001
[34] F. GALAZ-GARCÍA, M. KELL, A. MONDINO and G. SOSA, On Quotient of Spaces with Ricci Curvature Bounded Below, J. Funct. Anal. 275 (2018), 1368-1446. · Zbl 1396.58013
[35] N. GIGLI, The splitting theorem in non-smooth context, preprint, arXiv:1302.5555 2013.
[36] N. GIGLI, An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces 2 (2014), 169-213. · Zbl 1310.53031
[37] N. GIGLI, “On the Differential Structure of Metric Measure Spaces and Applications”, Mem. Amer. Math. Soc., Vol. 236, 2015, No. 1113. · Zbl 1325.53054
[38] N. GIGLI, “Nonsmooth Differential Geometry -An Approach Tailored for Spaces with Ricci Curvature Bounded from Below”, Mem. Amer. Math. Soc., Vol. 251, No. 1196, 2017.
[39] N. GIGLI and B.-X. HAN, Independence on p of weak upper gradients on RCD spaces, J. Func. Anal. 271 (2016), 1-11. · Zbl 1339.53041
[40] N. GIGLI, A. MONDINO and G. SAVARÉ, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. 111 (2015), 1071-1129. · Zbl 1398.53044
[41] A. GREVEN, P. PFAFFELHUBER and A. WINTER, Convergence in distribution of random metric measure spaces (-coalescent measure trees), Probab. Theory Related Fields. 145 (2009), 285-322. · Zbl 1215.05161
[42] M. GROMOV, “Metric Structures for Riemannian and Non-Riemannian Spaces”, Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, english edition, 2007, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. · Zbl 1113.53001
[43] M. HINO, Convergence of non-symmetric forms, J. Math. Kyoto Univ. 38 (1998), 329-341. · Zbl 0923.46024
[44] M. HINO, Existence of invariant measures for diffusion processes on a Wiener space, Osaka J. Math. 35 (1998), 717-734. · Zbl 0914.60055
[45] M. HINO, Exponential decay of positivity preserving semigroups on Lp, Osaka J. Math. 37 (2000), 603-624. · Zbl 0980.47038
[46] M. HINO, Correction to Exponential decay of positivity preserving semigroups on Lp, Os-aka J. Math. 39 (2002), 771.
[47] S. HONDA, “Elliptic PDEs on Compact Ricci Limit Spaces and Applications”, Mem. Amer. Math. Soc., Vol. 253, 2018, No. 1211. · Zbl 1400.53031
[48] N. IKEDA and S. WATANABE, “Stochastic Differential Equations and Diffusion Processes”, North-Holland and Kodansha, Amsterdam and Tokyo, 1989. · Zbl 0684.60040
[49] R. JIANG, Cheeger-harmonic functions in metric measure spaces revisited, J. Funct. Anal. 266 (2014), 1373-1394. · Zbl 1295.30130
[50] R. JIANG, H. LI and H. ZHANG, Heat kernel bounds on metric measure spaces and some applications, Potential Anal. 44 (2015), 601-627. · Zbl 1339.53043
[51] C. KETTERER, Ricci curvature bounds for warped products, J. Funct. Anal. 265 (2013), 266-299. · Zbl 1284.53072
[52] C. KETTERER, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. 103 (2015), 1228-1275. · Zbl 1317.53064
[53] A. N. KOLMOGOROFF, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann. 113 (1937), 766-772. · Zbl 0015.26004
[54] K. KUWAE and T. SHIOYA, Convergence of spectral structures: a functional analytic the-ory and its applications to spectral geometry, Commun. Anal. Geom. 11 (2003), 599-673. · Zbl 1092.53026
[55] J. LOTT and C. VILLANI, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), 903-991. · Zbl 1178.53038
[56] Z.-M. MA and M. RÖCKNER, “Introduction to the Theory of (Nonsymmetric) Dirichlet Forms”, Universitext, Springer, Berlin 1992. · Zbl 0826.31001
[57] G. METAFUNE, D. PALLARA and A. RHANDI, Global properties of invariant measures, J. Funct. Anal. 223 (2005), 396-424. · Zbl 1131.35318
[58] U. MOSCO, Composite media and asymptotic Dirichlet forms, J. Funct. Anal. 123 (1994), 368-421. · Zbl 0808.46042
[59] Y. OSHIMA, “Semi-Dirichlet Forms and Markov Processes”, De Gruyter Studies in Math-ematics , Vol. 48, 2018.
[60] A. PETRUNIN, Alexandrov meets Lott-Villani-Sturm, Münster J. Math. 4 (2011), 53-64. · Zbl 1247.53038
[61] M. REED and B. SIMON, “Methods of Modern Mathematical Physics II -Fourier Analysis, Self-Adjointness”, Academic Press, New York, London, 1975. · Zbl 0308.47002
[62] M. RÖCKNER and A. SCHIED, Rademacher’s theorem on configuration spaces and appli-cations, J. Funct. Anal. 169 (1999), 325-356. · Zbl 0960.58023
[63] G. SAVARÉ, Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD.K; 1/ metric measure spaces, Discrete Contin. Dyn. Syst. 34 (2014), 1641-1661. · Zbl 1275.49087
[64] N. SHANMUGALINGAM, Newtonian spaces: an extension of Sobolev spaces to metric mea-sure spaces, Rev. Mat. Iberoam. 16 (2000), 243-279. · Zbl 0974.46038
[65] I. SHIGEKAWA, Existence of Invariant Measures of Diffusions on an Abstract Wiener Space, Osaka J. Math. 24 (1987), 37-59. · Zbl 0636.60080
[66] D. W. STROOCK and S. R. S, VARADHAN, “Multidimensional Diffusion Processes”, Springer-Verlag, Berlin 1979. · Zbl 0426.60069
[67] K.-TH. STURM, Analysis on local Dirichlet spaces -II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), 275-312. · Zbl 0854.35015
[68] K.-TH. STURM, On the geometry of metric measure spaces, Acta Math. 196 (2006), 65-131. · Zbl 1105.53035
[69] K.-TH. STURM, On the geometry of metric measure spaces II, Acta Math. 196 (2006), 133-177. · Zbl 1106.53032
[70] K.-TH. STURM, Analysis on local Dirichlet spaces -III. The parabolic Harnack inequality, J. Math. Pures Appl. 75 (1996), 273-297. · Zbl 0854.35016
[71] K. SUZUKI, Convergence of Brownian motion on metric measure spaces under Riemannian curvature-dimension conditions, Electron. J. Probab. 24 (2019), 1-36. · Zbl 1444.60023
[72] K. SUZUKI, Convergence of Non-Symmetric Diffusion Processes on RCD Spaces, Calc. Var. Partial Differential Equations 57 (2018), 120. · Zbl 1404.60114
[73] M. TÖLLE, “Convergence of Non-symmetric Forms with Changing Reference Measures”, Thesis, University of Bielefeld, 2006.
[74] M. TÖLLE, “Variational Convergence of Nonlinear Partial Differential Operators on Vary-ing Banach Spaces”, PhD Thesis, University of Bielefeld, 2010.
[75] C. VILLANI, “Optimal Transport, Old and New”, Springer-Verlag Berlin Heidelberg, 2009. · Zbl 1156.53003
[76] H.-C. ZHANG and X.-P ZHU, Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom. 18 (2010), 503-553. · Zbl 1230.53064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.