×

Cones, rectifiability, and singular integral operators. (English) Zbl 1502.42009

Let \(\mu\) be a Radon measure on \(\mathbb{R}^d\), \(p\in[1,\infty)\), and \(n\in(0,d)\). In this paper, the author studies the conical energy \(\mathcal{E}_{\mu,p}(x,V,\alpha)\), which quantifies the portion of \(\mu\) lying in the cone with the vertex \(x\in\mathbb{R}^d\), the direction \(G(d,n-d)\), and the aperture \(\alpha\in(0,1)\). Using these energies, the author characterizes rectifiability and the big pieces of Lipschitz graphs property. Moreover, if further assuming that \(\mu\) has polynomial growth, the author gives a sufficient condition for \(L^2(\mu)\)-boundedness of singular integral operators with smooth odd kernels of convolution type.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
28A75 Length, area, volume, other geometric measure theory
28A78 Hausdorff and packing measures

References:

[1] Azzam, J.: Semi-uniform domains and the A 1 property for harmonic measure. Int. Math. Res. Not. IMRN 2021 (2021), no. 9, 6717-6771. · Zbl 1479.31002
[2] Azzam, J., David, G. and Toro, T.: Wasserstein distance and the rectifiability of doubling mea-sures: part I. Math. Ann. 364 (2016), no. 1-2, 151-224. · Zbl 1334.28004
[3] Azzam, J. and Mourgoglou, M.: A characterization of 1-rectifiable doubling measures with connected supports. Anal. PDE 9 (2016), no. 1, 99-109. · Zbl 1332.28007
[4] Azzam, J. and Tolsa, X.: Characterization of n-rectifiability in terms of Jones’ square function: Part II. Geom. Funct. Anal. 25 (2015), no. 5, 1371-1412. · Zbl 1334.28010
[5] Azzam, J., Tolsa, X. and Toro, T.: Characterization of rectifiable measures in terms of˛-numbers. Trans. Amer. Math. Soc. 373 (2020), no. 11, 7991-8037. · Zbl 1454.28001
[6] Badger, M.: Generalized rectifiability of measures and the identification problem. Complex Anal. Synerg. 5 (2019), no. 1, Paper no. 2. · Zbl 1464.28003
[7] Badger, M. and Naples, L.: Radon measures and Lipschitz graphs. Bull. Lond. Math. Soc. 53 (2021), no. 3, 921-936. · Zbl 1476.28002
[8] Badger, M. and Schul, R.: Multiscale analysis of 1-rectifiable measures: necessary conditions. Math. Ann. 361 (2015), no. 3-4, 1055-1072. · Zbl 1314.28003
[9] Badger, M. and Schul, R.: Two sufficient conditions for rectifiable measures. Proc. Amer. Math. Soc. 144 (2016), no. 6, 2445-2454. · Zbl 1345.28004
[10] Badger, M. and Schul, R.: Multiscale analysis of 1-rectifiable measures II: Characterizations. Anal. Geom. Metr. Spaces 5 (2017), no. 1, 1-39. · Zbl 1360.28004
[11] Bishop, C. J. and Jones, P. W.: Harmonic measure, L 2 -estimates and the Schwarzian derivative. J. Anal. Math. 62 (1994), no. 1, 77-113. · Zbl 0801.30024
[12] Chang, A. and Tolsa, X.: Analytic capacity and projections. J. Eur. Math. Soc. (JEMS) 22 (2020), no. 12, 4121-4159. · Zbl 1467.30018
[13] Conde-Alonso, J. M., Mourgoglou, M. and Tolsa, X.: Failure of L 2 boundedness of gradients of single layer potentials for measures with zero low density. Math. Ann. 373 (2019), no. 1, 253-285. · Zbl 1414.35007
[14] Csörnyei, M., Käenmäki, A., Rajala, T. and Suomala, V.: Upper conical density results for general measures on R n . Proc. Edinb. Math. Soc. (2) 53 (2010), no. 2, 311-331. · Zbl 1200.28009
[15] Dąbrowski, D.: Necessary condition for rectifiability involving Wasserstein distance W 2 . Int. Math. Res. Not. IMRN 2020 (2020), no. 22, 8936-8972. · Zbl 1462.28001
[16] Dąbrowski, D.: Two examples related to conical energies. Ann. Fenn. Math. 47 (2022), no. 1, 261-281. · Zbl 1490.28002
[17] Dąbrowski, D.: Sufficient condition for rectifiability involving Wasserstein distance W 2 . J. Geom. Anal. 31 (2021), 8539-8606. · Zbl 1477.28003
[18] David, G.: Opérateurs d’intégrale singulière sur les surfaces régulières. Ann. Sci. Éc. Norm. Supér. (4) 21 (1988), no. 2, 225-258. · Zbl 0655.42013
[19] David, G.: Wavelets and singular integrals on curves and surfaces. Lecture Notes in Math. 1465, Springer, Berlin, Heidelberg, 1991.
[20] David, G. and Mattila, P.: Removable sets for Lipschitz harmonic functions in the plane. Rev. Mat. Iberoam. 16 (2000), no. 1, 137-215. · Zbl 0976.30016
[21] David, G. and Semmes, S.: Singular integrals and rectifiable sets in R n : Au-delà des graphes lipschitziens. Astérisque 193 (1991). · Zbl 0743.49018
[22] David, G. and Semmes, S.: Analysis of and on uniformly rectifiable sets. Math. Surveys Monogr. 38, Amer. Math. Soc., Providence, RI, 1993. · Zbl 0832.42008
[23] David, G. and Semmes, S.: Quantitative rectifiability and Lipschitz mappings. Trans. Amer. Math. Soc. 337 (1993), no. 2, 855-889. · Zbl 0792.49029
[24] Del Nin, G. and Idu, K. O.: Geometric criteria for C 1;˛r ectifiability. J. Lond. Math. Soc. (2) 105 (2022), no. 1, 445-468. · Zbl 1538.28009
[25] Edelen, N., Naber, A. and Valtorta, D.: Quantitative Reifenberg theorem for measures. Preprint 2016, arXiv: 1612.08052.
[26] Eiderman, V., Nazarov, F. and Volberg, A.: The s-Riesz transform of an s-dimensional measure in R 2 is unbounded for 1 < s < 2. J. Anal. Math. 122 (2014), no. 1, 1-23. · Zbl 1305.28002
[27] Federer, H.: The (’, k) rectifiable subsets of n space. Trans. Amer. Math. Soc. 62 (1947), no. 1, 114-192. · Zbl 0032.14902
[28] Ghinassi, S.: Sufficient conditions for C 1;˛p arametrization and rectifiability. Ann. Acad. Sci. Fenn. Math. 45 (2020), 1065-1094. · Zbl 1447.28002
[29] Ghinassi, S. and Goering, M.: Menger curvatures and C 1;˛r ectifiability of measures. Arch. Math. (Basel) 114 (2020), no. 4, 419-429. · Zbl 1439.28005
[30] Girela-Sarrión, D.: Geometric conditions for the L 2 -boundedness of singular integral opera-tors with odd kernels with respect to measures with polynomial growth in R d . J. Anal. Math. 137 (2019), no. 1, 339-372. · Zbl 1432.42008
[31] Grafakos, L.: Classical Fourier analysis. Third edition, Grad. Texts in Math. 249, Springer, New York, 2014. · Zbl 1304.42001
[32] Grafakos, L.: Modern Fourier analysis. Third edition, Grad. Texts in Math. 250, Springer, New York, 2014. · Zbl 1304.42002
[33] Jones, P. W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102 (1990), no. 1, 1-15. · Zbl 0731.30018
[34] Joyce, H. and Mörters, P.: A set with finite curvature and projections of zero length. J. Math. Anal. Appl. 247 (2000), no. 1, 126-135. · Zbl 0973.30022
[35] Käenmäki, A.: On upper conical density results. In Recent developments in fractals and related fields, pp. 45-54, Birkhäuser, Boston, 2010. · Zbl 1216.28009
[36] Käenmäki, A. and Suomala, V.: Conical upper density theorems and porosity of measures. Adv. Math. 217 (2008), no. 3, 952-966. · Zbl 1147.28004
[37] Käenmäki, A. and Suomala, V.: Nonsymmetric conical upper density and k-porosity. Trans. Amer. Math. Soc. 363 (2011), no. 3, 1183-1195. · Zbl 1259.28006
[38] Lerman, G.: Quantifying curvelike structures of measures by using L 2 Jones quantities. Comm. Pure Appl. Math. 56 (2003), no. 9, 1294-1365. · Zbl 1076.28005
[39] Martikainen, H. and Orponen, T.: Boundedness of the density normalised Jones’ square func-tion does not imply 1-rectifiability. J. Math. Pures Appl. 110 (2018), 71-92. · Zbl 1381.28006
[40] Martikainen, H. and Orponen, T.: Characterising the big pieces of Lipschitz graphs property using projections. J. Eur. Math. Soc. (JEMS) 20 (2018), no. 5, 1055-1073. · Zbl 1393.28004
[41] Mattila, P.: Distribution of sets and measures along planes. J. Lond. Math. Soc. (2) 2 (1988), no. 1, 125-132. · Zbl 0618.28005
[42] Mattila, P.: Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge, UK, 1995. · Zbl 0819.28004
[43] Mattila, P., Melnikov, M. S. and Verdera, J.: The Cauchy integral, analytic capacity, and uni-form rectifiability. Ann. of Math. 144 (1996), no. 1, 127-136. · Zbl 0897.42007
[44] Mayboroda, S. and Volberg, A.: Boundedness of the square function and rectifiability. C. R. Math. Acad. Sci. Paris 347 (2009), no. 17, 1051-1056. · Zbl 1185.28009
[45] Naples, L.: Rectifiability of pointwise doubling measures in Hilbert space. PhD thesis, Univer-sity of Connecticut, Storrs, 2020.
[46] Nazarov, F., Tolsa, X. and Volberg, A.: On the uniform rectifiability of ad-regular measures with bounded riesz transform operator: the case of codimension 1. Acta Math. 213 (2014), no. 2, 237-321. · Zbl 1311.28004
[47] Nazarov, F., Tolsa, X. and Volberg, A.: The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions. Publ. Mat. 58 (2014), no. 2, 517-532. · Zbl 1312.44005
[48] Nazarov, F., Treil, S. and Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. IMRN 1997 (1997), no. 15, 703-726. · Zbl 0889.42013
[49] Orponen, T.: Absolute continuity and˛-numbers on the real line. Anal. PDE 12 (2018), no. 4, 969-996. · Zbl 1403.28003
[50] Orponen, T.: Plenty of big projections imply big pieces of Lipschitz graphs. Invent. Math. 226 (2021), 653-709. · Zbl 1518.28007
[51] Pajot, H.: Conditions quantitatives de rectifiabilité. Bull. Soc. Math. France 125 (1997), no. 1, 15-53. · Zbl 0890.28004
[52] Prat, L., Puliatti, C. and Tolsa, X.: L 2 -boundedness of gradients of single layer potentials and uniform rectifiability. Anal. PDE 14 (2021), no. 3, 717-791. · Zbl 1473.35148
[53] Preiss, D.: Geometry of measures in R n : Distribution, rectifiability, and densities. Ann. of Math. 125 (1987), no. 3, 537-643. · Zbl 0627.28008
[54] Santilli, M.: Rectifiability and approximate differentiability of higher order for sets. Indiana Univ. Math. J. 68 (2019), 1013-1046. · Zbl 1426.28010
[55] Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. of Math. (2) 162 (2005), no. 3, 1243-1304. · Zbl 1097.30020
[56] Tolsa, X.: Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and qua-siorthogonality. Proc. Lond. Math. Soc. (3) 98 (2009), no. 2, 393-426. · Zbl 1194.28005
[57] Tolsa, X.: Mass transport and uniform rectifiability. Geom. Funct. Anal. 22 (2012), no. 2, 478-527. · Zbl 1251.49058
[58] Tolsa, X.: Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory. Progr. Math. 307, Birkhäuser, Cham, 2014. · Zbl 1290.42002
[59] Tolsa, X.: Characterization of n-rectifiability in terms of Jones’ square function: part I. Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3643-3665. · Zbl 1416.42014
[60] Tolsa, X.: Rectifiable measures, square functions involving densities, and the Cauchy trans-form. Mem. Amer. Math. Soc. 245 (2017), no. 1158.
[61] Tolsa, X.: Rectifiability of measures and theˇp coefficients. Publ. Mat. 63 (2019), no. 2, 491-519. · Zbl 1423.28015
[62] Tolsa, X. and Toro, T.: Rectifiability via a square function and Preiss’ theorem. Int. Math. Res. Not. IMRN 2015 (2015), no. 13, 4638-4662. · Zbl 1318.28014
[63] Villa, M.: A square function involving the center of mass and rectifiability. Math. Z. 301 (2022), no. 3, 3207-3244. · Zbl 1503.28007
[64] Villa, M.: Tangent points of d -lower content regular sets andˇnumbers. J. Lond. Math. Soc. (2) 101 (2020), no. 2, 530-555. · Zbl 1443.28002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.