×

Escape times across the golden cantorus of the standard map. (English) Zbl 1502.37048

The authors study the escape rates across a Cantorus (i.e., a Cantor structure with gaps) for the Chirikov standard map \(M_k : \mathbb{S}^1 \times \mathbb{R} \rightarrow \mathbb{S}^1 \times \mathbb{R}\) where \[ \begin{bmatrix} x\\ y\\ \end{bmatrix} \mapsto \begin{bmatrix} x+y+\frac{k}{2 \pi} \sin(2 \pi x)\\ y+\frac{k}{2 \pi} \sin(2 \pi x)\\ \end{bmatrix}. \] They investigate the connection between the escape rates for parameters \(k\) greater than but near Greene’s parameter \(k_G \approx 0.971635406\) and the fine structure of the phase space close to the destruction of the golden invariant curve. For related results about the Cantorus as \(k \rightarrow k_G\), see also R. S. Mackay [Physica 7D, 283–300 (1983; Zbl 0568.70023); Renormalisation in area-preserving maps. Singapore: World Scientific (1993; Zbl 0791.58002)].

MSC:

37E05 Dynamical systems involving maps of the interval
37E20 Universality and renormalization of dynamical systems
37C05 Dynamical systems involving smooth mappings and diffeomorphisms

Software:

PARI/GP
Full Text: DOI

References:

[1] Arioli, G.; Koch, H., The Critical Renormalization Fixed Point for Commuting Pairs of Area-Preserving Maps, Comm. Math. Phys., 295, 2, 415-429 (2010) · Zbl 1196.37074 · doi:10.1007/s00220-009-0922-1
[2] Batut, C., Belabas, K., Bernardi, D., Cohen, H., and Olivier, M., Users’ Guide to PARI/GP, http://pari.math.u-bordeaux.fr/(version 2.13.3).
[3] Berretti, A.; Gentile, G., Scaling of the Critical Function for the Standard Map: Some Numerical Results, Nonlinearity, 17, 2, 649-670 (2004) · Zbl 1053.37020 · doi:10.1088/0951-7715/17/2/017
[4] Calleja, R.; de la Llave, R., A Numerically Accessible Criterion for the Breakdown of Quasiperiodic Solution and Its Rigorous Justification, Nonlinearity, 23, 9, 2029-2058 (2010) · Zbl 1209.37008 · doi:10.1088/0951-7715/23/9/001
[5] Chirikov, B. V., A Universal Instability of Many-Dimensional Oscillator Systems, Phys. Rep., 52, 5, 264-379 (1979) · doi:10.1016/0370-1573(79)90023-1
[6] Cincotta, P. M.; Simó, C., Global Dynamics and Diffusion in the Rational Standard Map, Phys. D, 413 (2020) · Zbl 1491.37001 · doi:10.1016/j.physd.2020.132661
[7] Dana, I.; Fishman, S., Diffusion in the Standard Map, Phys. D, 17, 1, 63-74 (1985) · Zbl 0595.58015 · doi:10.1016/0167-2789(85)90134-4
[8] Falcolini, C.; de la Llave, R., A Rigorous Partial Justification of Greene’s Criterion, J. Statist. Phys., 67, 3-4, 609-643 (1992) · Zbl 0892.58045 · doi:10.1007/BF01049722
[9] Falcolini, C.; de la Llave, R., Numerical Calculation of Domains of Analyticity for Perturbation Theories in the Presence of Small Divisors, J. Statist. Phys., 67, 3-4, 645-666 (1992) · Zbl 0892.58066 · doi:10.1007/BF01049723
[10] Figueras, J.-Ll.; Haro, À.; Luque, A., Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach, Found. Comput. Math., 17, 5, 1123-1193 (2017) · Zbl 1383.37047 · doi:10.1007/s10208-016-9339-3
[11] Golé, Ch., Symplectic Twist Maps: Global Variational Techniques (2001), River Edge, N.J.: World Sci., River Edge, N.J. · Zbl 1330.37001 · doi:10.1142/1349
[12] Greene, J. M., A Method for Determining Stochastic Transition, J. Math. Phys., 20, 6, 1183-1201 (1979) · doi:10.1063/1.524170
[13] Haydn, N. T. A., On Invariant Curves under Renormalisation, Nonlinearity, 3, 3, 887-912 (1990) · Zbl 0709.58033 · doi:10.1088/0951-7715/3/3/016
[14] Kadanoff, L. P.; Shenker, S. J., Critical Behavior of a KAM Surface: 1. Empirical Results, J. Stat. Phys., 27, 4, 631-656 (1982) · Zbl 0925.58021 · doi:10.1007/BF01013439
[15] Koch, H., On Hyperbolicity in the Renormalization of Near-Critical Area-Preserving Maps, Discrete Contin. Dyn. Syst., 36, 12, 7029-7056 (2016) · Zbl 1369.37053 · doi:10.3934/dcds.2016106
[16] de la Llave, R.; Olvera, A., The Obstruction Criterion for Non-Existence of Invariant Circles and Renormalization, Nonlinearity, 19, 8, 1907-1937 (2006) · Zbl 1190.37046 · doi:10.1088/0951-7715/19/8/008
[17] MacKay, R. S., A Renormalisation Approach to Invariant Circles in Area-Preserving Maps, Phys. D, 7, 1-3, 283-300 (1983) · Zbl 1194.37068 · doi:10.1016/0167-2789(83)90131-8
[18] MacKay, R. S., Greene’s Residue Criterion, Nonlinearity, 5, 1, 161-187 (1992) · Zbl 0749.58036 · doi:10.1088/0951-7715/5/1/007
[19] MacKay, R. S., Renormalisation in Area-Preserving Maps, Adv. Ser. Nonlinear Dyn., vol. 6, River Edge, N.J.: World Sci., 1992. · Zbl 0791.58002
[20] MacKay, R. S.; Peixoto, M. M.; Pinto, A. A.; Rand, D. A., Existence of Invariant Circles for Infinitely Renormalisable Area-Preserving Maps, Dynamics, Games and Science: 1, 631-636 (2011), Heidelberg: Springer, Heidelberg · Zbl 1253.37047 · doi:10.1007/978-3-642-11456-4_39
[21] MacKay, R. S.; Meiss, J. D.; Percival, I. C., Transport in Hamiltonian Systems, Phys. D, 13, 1-2, 55-81 (1984) · Zbl 0585.58039 · doi:10.1016/0167-2789(84)90270-7
[22] Martínez, R.; Simó, C., Invariant Manifolds at Infinity of the RTBP and the Boundaries of Bounded Motion, Regul. Chaotic Dyn., 19, 6, 745-765 (2014) · Zbl 1342.37033 · doi:10.1134/S1560354714060112
[23] Mather, J. N., Nonexistence of Invariant Circles, Ergodic Theory Dynam. Systems, 4, 2, 301-309 (1984) · Zbl 0557.58019 · doi:10.1017/S0143385700002455
[24] Mather, J. N., A Criterion for the Nonexistence of Invariant Circles, Inst. Hautes Études Sci. Publ. Math., 63, 153-204 (1986) · Zbl 0603.58028 · doi:10.1007/BF02831625
[25] Meiss, J. D., Symplectic Maps, Variational Principles, and Transport, Rev. Modern Phys., 64, 3, 795-848 (1992) · Zbl 1160.37302 · doi:10.1103/RevModPhys.64.795
[26] Meiss, J. D., Thirty Years of Turnstiles and Transport, Chaos, 25, 9, 17 (2015) · Zbl 1374.37004 · doi:10.1063/1.4915831
[27] Miguel, N.; Simó, C.; Vieiro, A., Effect of Islands in Diffusive Properties of the Standard Map for Large Parameter Values, Found. Comput. Math., 15, 1, 89-123 (2015) · Zbl 1376.37017 · doi:10.1007/s10208-014-9210-3
[28] Olvera, A.; Simó, C., An Obstruction Method for the Destruction of Invariant Curves, Phys. D, 26, 1-3, 181-192 (1987) · Zbl 0612.58039 · doi:10.1016/0167-2789(87)90222-3
[29] Simó, C. and Treschev, D., Evolution of the “Last” Invariant Curve in a Family of Area Preserving Maps, Preprint, 1998 (see http://www.maia.ub.es/dsg/1998/index.html).
[30] Simó, C.; Vieiro, A., Resonant Zones, Inner and Outer Splittings in Generic and Low Order Resonances of Area Preserving Maps, Nonlinearity, 22, 5, 1191-1245 (2009) · Zbl 1181.37077 · doi:10.1088/0951-7715/22/5/012
[31] Stirnemann, A., Renormalization for Golden Circles, Comm. Math. Phys., 152, 2, 369-431 (1993) · Zbl 0773.58023 · doi:10.1007/BF02098303
[32] Stirnemann, A., Towards an Existence Proof of MacKay’s Fixed Point, Comm. Math. Phys., 188, 3, 723-735 (1997) · Zbl 0888.58057 · doi:10.1007/s002200050185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.