×

A lower semicontinuity result for linearised elasto-plasticity coupled with damage in \(W^{1,\gamma}\), \(\gamma > 1\). (English) Zbl 1502.35164

Summary: We prove the lower semicontinuity of functionals of the form \[ \int\limits_\Omega V(\alpha)\mathrm{d}|\mathrm{E} u|, \] with respect to the weak converge of \(\alpha\) in \(W^{1, \gamma}(\Omega)\), \(\gamma > 1\), and the weak* convergence of \(u\) in \(BD(\Omega)\), where \(\Omega \subset\mathbb{R}^n\). These functional arise in the variational modelling of linearised elasto-plasticity coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static evolutions. This is the first result achieved for subcritical exponents \(\gamma < n\).

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
74A45 Theories of fracture and damage
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74R20 Anelastic fracture and damage
35R09 Integro-partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Abdelmoula R.; Marigo JJ; Weller T., Construction d’une loi de fatigue à partir d’un modèle de forces cohésives: Cas d’une fissure en mode III, C R Mecanique, 337, 53-59 (2009) · Zbl 1173.70305 · doi:10.1016/j.crme.2008.12.001
[2] Alessi R.; Ambati M.; Gerasimov T.; et al., Comparison of phase-field models of fracture coupled with plasticity, In: Advances in Computational Plasticity, Cham: Springer, 1-21 (2018) · Zbl 1493.74006
[3] Alessi R.; Crismale V.; Orlando G., Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach, J Nonlinear Sci, 29, 1041-1094 (2019) · Zbl 1417.74005 · doi:10.1007/s00332-018-9511-9
[4] Alessi R.; Marigo JJ; Vidoli S., Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch Ration Mech Anal, 214, 575-615 (2014) · Zbl 1321.74006 · doi:10.1007/s00205-014-0763-8
[5] Alessi R.; Marigo JJ; Vidoli S., Gradient damage models coupled with plasticity: Variational formulation and main properties, Mech Mater, 80, 351-367 (2015) · doi:10.1016/j.mechmat.2013.12.005
[6] Alicandro R.; Braides A.; Shah J., Free-discontinuity problems via functionals involving the \(L^1\)-norm of the gradient and their approximations, Interface Free Bound, 1, 17-37 (1999) · Zbl 0947.49011
[7] Ambati M.; Kruse R.; De Lorenzis L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput Mech, 57, 149-167 (2016) · Zbl 1381.74181 · doi:10.1007/s00466-015-1225-3
[8] Ambrosio L.; Coscia A.; Dal Maso G., Fine properties of functions with bounded deformation, Arch Ration Mech Anal, 139, 201-238 (1997) · Zbl 0890.49019 · doi:10.1007/s002050050051
[9] Ambrosio L.; Fusco N.; Pallara D., Functions of Bounded Variation and Free DiscontinuityProblems, Oxford: Oxford University Press (2000) · Zbl 0957.49001
[10] Ambrosio L.; Tortorelli VM, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Comm Pure Appl Math, 43, 999-1036 (1990) · Zbl 0722.49020 · doi:10.1002/cpa.3160430805
[11] Artina M.; Cagnetti F.; Fornasier M.; et al., Linearly constrained evolutions of critical points and an application to cohesive fractures, Math Mod Meth Appl Sci, 27, 231-290 (2017) · Zbl 1358.74053 · doi:10.1142/S0218202517500014
[12] Bensoussan A.; Frehse J., Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and \(H^1\) regularity, Comment Math Univ Carolin, 37, 285-304 (1996) · Zbl 0851.35079
[13] Bonetti E.; Rocca E.; Rossi R.; et al., A rate-independent gradient system in damage coupled with plasticity via structured strains, ESAIM P Surv, 54, 54-69 (2016) · Zbl 1366.74009 · doi:10.1051/proc/201654054
[14] Braides A., Γ-Convergence for Beginners, Oxford: Oxford University Press (2002) · Zbl 1198.49001
[15] Cagnetti F.; Toader R., Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A young measures approach, ESAIM Contr Optim Calc Var, 17, 1-27 (2011) · Zbl 1210.49046 · doi:10.1051/cocv/2009037
[16] Chambolle A.; Crismale V., A density result in \(GSBD^p\) with applications to the approximation of brittle fracture energies, Arch Ration Mech Anal, 232, 1329-1378 (2019) · Zbl 1411.74050 · doi:10.1007/s00205-018-01344-7
[17] Conti S.; Focardi M.; Iurlano F., Phase field approximation of cohesive fracture models, AnnInst H Poincaré Anal Non Linéaire, 33, 1033-1067 (2016) · Zbl 1345.49012
[18] Crismale V., Globally stable quasistatic evolution for a coupled elastoplastic-damage model, ESAIM Contr Optim Calc Var, 22, 883-912 (2016) · Zbl 1342.74026 · doi:10.1051/cocv/2015037
[19] Crismale V., Globally stable quasistatic evolution for strain gradient plasticity coupled with damage, Ann Mat Pura Appl, 196, 641-685 (2017) · Zbl 1365.74033 · doi:10.1007/s10231-016-0590-7
[20] Crismale V.; Lazzaroni G., Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model, Calc Var Partial Dif, 55, 17 (2016) · Zbl 1333.74021 · doi:10.1007/s00526-015-0947-6
[21] Crismale V.; Lazzaroni G.; Orlando G., Cohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue, Math Mod Meth Appl Sci, 28, 1371-1412 (2018) · Zbl 1391.74035 · doi:10.1142/S0218202518500379
[22] Crismale V.; Orlando G., A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in \(W^{1,n}\), NoDEA Nonlinear Diff, 25, 16 (2018) · Zbl 1388.49011 · doi:10.1007/s00030-018-0507-9
[23] Dal Maso G.; DeSimone A.; Mora MG, Quasistatic evolution problems for linearly elasticperfectly plastic materials, Arch Ration Mech Anal, 180, 237-291 (2006) · Zbl 1093.74007 · doi:10.1007/s00205-005-0407-0
[24] Dal Maso G.; Orlando G.; Toader R., Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: The antiplane case, Calc Var Partial Dif, 55, 45 (2016) · Zbl 1358.49015 · doi:10.1007/s00526-016-0981-z
[25] Dal Maso G.; Orlando G.; Toader R., Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation, Adv Calc Var, 10, 183-207 (2017) · Zbl 1364.49013
[26] Dal Maso G.; Zanini C., Quasi-static crack growth for a cohesive zone model with prescribed crack path, P Roy Soc Edinb A, 137, 253-279 (2007) · Zbl 1116.74004 · doi:10.1017/S030821050500079X
[27] Davoli E.; Roubíček T.; Stefanelli U., Dynamic perfect plasticity and damage in viscoelastic solids, ZAMM J Appl Math Mech, 99, e201800161 (2019) · Zbl 1538.35370
[28] Demyanov A., Regularity of stresses in Prandtl-Reuss perfect plasticity, Calc Var PartialDif, 34, 23-72 (2009) · Zbl 1149.74014 · doi:10.1007/s00526-008-0174-5
[29] Evans LC; Gariepy RF, Measure Theory and Fine Properties of Functions, Boca Raton: CRC Press (1992) · Zbl 0804.28001
[30] Heinonen J.; Kilpeläinen T.; Martio O., Nonlinear Potential Theory of Degenerate EllipticEquations, Mineola: Dover Publications Inc (2006) · Zbl 1115.31001
[31] Horn RA; Johnson CR, Matrix Analysis, 2 Eds, , Cambridge: Cambridge University Press. (2013) · Zbl 1267.15001
[32] Ibrahimbegovic A., Nonlinear Solid Mechanics: Theoretical Formulations and FiniteElement Solution Methods, Dordrecht: Springer (2009) · Zbl 1168.74002
[33] Iurlano F., A density result for GSBD and its application to the approximation of brittle fracture energies, Calc Var Partial Dif, 51, 315-342 (2014) · Zbl 1297.49080 · doi:10.1007/s00526-013-0676-7
[34] Knees D.; Rossi R.; Zanini C., A vanishing viscosity approach to a rate-independent damage model, Math Mod Meth Appl Sci, 23, 565-616 (2013) · Zbl 1262.74030 · doi:10.1142/S021820251250056X
[35] Lemaitre J.; Chabouche J., Mechanics of Solid Materials, Avon: Cambridge University Press (1990) · Zbl 0743.73002
[36] Lions PL, The concentration-compactness principle in the calculus of variations, The limit case, part I. Rev Mat Iberoam, 1, 145-201 (1985) · Zbl 0704.49005
[37] Melching D.; Scala R.; Zeman J., Damage model for plastic materials at finite strains, ZAMMJ Appl Math Mech, 99, e201800032 (2019) · Zbl 07804536
[38] Miehe C.; Aldakheel F.; Raina A., Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int J Plasticity, 84, 1-32 (2016) · doi:10.1016/j.ijplas.2016.04.011
[39] Miehe C.; Hofacker M.; Schänzel LM; et al., Phase field modeling of fracture in multi-physics problems, Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Method Appl M, 294, 486-522 (2015) · Zbl 1423.74837
[40] Mielke A., Evolution of rate-independent systems, In: Evolutionary Equations, Amsterdam: Elsevier/North-Holland, 461-559 (2015) · Zbl 1120.47062
[41] Negri M.; Scala R., A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface, Nonlinear Anal Real, 38, 271-305 (2017) · Zbl 1462.74141 · doi:10.1016/j.nonrwa.2017.05.002
[42] Pham K.; Marigo JJ, Approche variationnelle de l’endommagement: I, Les concepts fondamentaux. CR Mécanique, 338, 191-198 (2010) · Zbl 1300.74046
[43] Pham K.; Marigo JJ, Approche variationnelle de l’endommagement: II, Les modèles à gradient, CR Mécanique, 338, 199-206 (2010) · Zbl 1300.74047
[44] Reshetnyak YG, Weak convergence of completely additive vector functions on a set, Siberian Math J, 9, 1039-1045 (1968) · Zbl 0176.44402 · doi:10.1007/BF02196453
[45] Rossi R., From visco to perfect plasticity in thermoviscoelastic materials, ZAMM J ApplMath Mech, 98, 1123-1189 (2018) · Zbl 07776892 · doi:10.1002/zamm.201700205
[46] Rossi R.; Thomas M., Coupling rate-independent and rate-dependent processes: Existence results, SIAM J Math Anal, 49, 1419-1494 (2017) · Zbl 1368.35009 · doi:10.1137/15M1051567
[47] Roubíček T.; Valdman J., Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation, SIAM J Appl Math, 76, 314-340 (2016) · Zbl 1383.74016 · doi:10.1137/15M1019647
[48] Roubíček T.; Valdman J., Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation, Math Mech Solids, 22, 1267-1287 (2017) · Zbl 1371.74055 · doi:10.1177/1081286515627674
[49] Temam R., Mathematical Problems in Plasticity, Paris: Gauthier-Villars (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.