×

Periodic Hölder waves in a class of negative-order dispersive equations. (English) Zbl 1502.35037

Summary: We prove the existence of highest, cusped, periodic travelling-wave solutions with exact and optimal \(\alpha \)-Hölder continuity in a class of fractional negative-order dispersive equations of the form \[ u_t + (| \text{D} |^{- \alpha} u + n (u))_x = 0 \] for every \(\alpha \in(0, 1)\) with homogeneous Fourier multiplier \(| \text{D} |^{- \alpha} \). We tackle nonlinearities \(n(u)\) of the type \(| u |^p\) or \(u | u |^{p - 1}\) for all real \(p > 1\), and show that when \(n\) is odd, the waves also feature antisymmetry and thus contain inverted cusps. Tools involve detailed pointwise estimates in tandem with analytic global bifurcation, where we resolve the issue with nonsmooth \(n\) by means of regularisation. We believe that both the construction of highest antisymmetric waves and the regularisation of nonsmooth terms to an analytic bifurcation setting are new in this context, with direct applicability also to generalised versions of the Whitham, the Burgers-Poisson, the Burgers-Hilbert, the Degasperis-Procesi, the reduced Ostrovsky, and the bidirectional Whitham equations.

MSC:

35C07 Traveling wave solutions
35B10 Periodic solutions to PDEs
35B32 Bifurcations in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35R11 Fractional partial differential equations
35S30 Fourier integral operators applied to PDEs
45M15 Periodic solutions of integral equations
49J52 Nonsmooth analysis

Software:

SpecTraVVave

References:

[1] Benjamin, T. B.; Bona, J. L.; Mahony, J. J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. A, 272, 1220, 47-78 (1972) · Zbl 0229.35013
[2] Kalisch, H.; Moldabayev, D.; Verdier, O., A numerical study of nonlinear dispersive wave models with SpecTraVVave, Electron. J. Differ. Equ., 2017, 62, 1-23 (2017) · Zbl 1370.35074
[3] Emerald, L., Rigorous derivation from the water waves equations of some full dispersion shallow water models, SIAM J. Math. Anal., 53, 4, 3772-3800 (2021) · Zbl 1468.76012
[4] Emerald, L., Rigorous derivation of the Whitham equations from the water waves equations in the shallow water regime, Nonlinearity, 34, 11, 7470-7509 (2021) · Zbl 1479.35663
[5] Hur, V. M., On the formation of singularities for surface water waves, Commun. Pure Appl. Anal., 11, 4, 1465-1474 (2012) · Zbl 1264.35009
[6] Castro, A.; Córdoba, D.; Gancedo, F., Singularity formations for a surface wave model, Nonlinearity, 23, 11, 2835-2847 (2010) · Zbl 1223.35016
[7] Hur, V. M.; Tao, L., Wave breaking for the Whitham equation with fractional dispersion, Nonlinearity, 27, 12, 2937-2949 (2014) · Zbl 1314.35142
[8] Toland, J. F.; Benjamin, T. B., On the existence of a wave of greatest height and Stokes’s conjecture, Proc. R. Soc. Lond. A, 363, 1715, 469-485 (1978) · Zbl 0388.76016
[9] Linares, F.; Pilod, D.; Saut, J.-C., Dispersive perturbations of Burgers and hyperbolic equations I: local theory, SIAM J. Math. Anal., 46, 2, 1505-1537 (2014) · Zbl 1294.35124
[10] Klein, C.; Linares, F.; Pilod, D.; Saut, J.-C., On Whitham and related equations, Stud. Appl. Math., 140, 2, 133-177 (2018) · Zbl 1393.35208
[11] Ehrnström, M.; Wang, Y., Enhanced existence time of solutions to the fractional Korteweg-de Vries equation, SIAM J. Math. Anal., 51, 4, 3298-3323 (2019) · Zbl 1419.76063
[12] Klein, C.; Saut, J.-C.; Wang, Y., On the modified fractional Korteweg-de Vries and related equations, Nonlinearity, 35, 3, 1170-1212 (2022) · Zbl 1525.76021
[13] Riaño, O., On persistence properties in weighted spaces for solutions of the fractional Korteweg-de Vries equation, Nonlinearity, 34, 7, 4604-4660 (2021) · Zbl 1469.35189
[14] Ehrnström, M.; Wahlén, E., On Whitham’s conjecture of a highest cusped wave for a nonlocal dispersive equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 36, 6, 1603-1637 (2019) · Zbl 1423.35059
[15] Whitham, G. B., Variational methods and applications to water waves, Proc. R. Soc. Lond. A, 299, 1456, 6-25 (1967) · Zbl 0163.21104
[16] Whitham, G. B., Linear and Nonlinear Waves, Pure and Applied Mathematics (1974), Wiley-Interscience · Zbl 0373.76001
[17] Ehrnström, M.; Kalisch, H., Traveling waves for the Whitham equation, Differ. Integral Equ., 22, 11/12, 1193-1210 (2009) · Zbl 1240.35449
[18] Ehrnström, M.; Kalisch, H., Global bifurcation for the Whitham equation, Math. Model. Nat. Phenom., 8, 5, 13-30 (2013) · Zbl 1283.35108
[19] Truong, T.; Wahlén, E.; Wheeler, M. H., Global bifurcation of solitary waves for the Whitham equation, Math. Ann. (2021)
[20] M. Ehrnström, O. Mæhlen, K. Varholm, On the precise behaviour of extreme solutions to a family of nonlocal dispersive equations, 2022, in preparation.
[21] Afram, O. O., On steady solutions of a generalized Whitham equation, Trans. R. Norw. Soc. Sci. Lett., 3, 5-29 (2021)
[22] Ørke, M. C., Highest traveling waves for fractional Korteweg-De Vries and Degasperis-Procesi equations with inhomogeneous symbols (2022)
[23] Ehrnström, M.; Johnson, M. A.; Claassen, K. M., Existence of a highest wave in a fully dispersive two-way shallow water model, Arch. Ration. Mech. Anal., 231, 3, 1635-1673 (2019) · Zbl 1435.76014
[24] Le, H., Waves of maximal height for a class of nonlocal equations with inhomogeneous symbols, Asymptot. Anal. Pre-press, 1-26 (2021)
[25] Brüll, G.; Dhara, R. N., Waves of maximal height for a class of nonlocal equations with homogeneous symbols, Indiana Univ. Math. J., 70, 2, 711-742 (2021) · Zbl 1467.35085
[26] Bressan, A.; Nguyen, K. T., Global existence of weak solutions for the Burgers-Hilbert equation, SIAM J. Math. Anal., 46, 4, 2884-2904 (2014) · Zbl 1315.35121
[27] Geyer, A.; Pelinovsky, D., Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation, SIAM J. Math. Anal., 51, 2, 1188-1208 (2019) · Zbl 1412.35031
[28] Arnesen, M. N., A non-local approach to waves of maximal height for the Degasperis-Procesi equation, J. Math. Anal. Appl., 479, 1, 25-44 (2019) · Zbl 1420.35060
[29] Monguzzi, A.; Peloso, M. M.; Salvatori, M., Fractional Laplacian, homogeneous Sobolev spaces and their realizations, Ann. Mat., 199, 6, 2243-2261 (2020) · Zbl 1473.46043
[30] Buffoni, B.; Toland, J., Analytic Theory of Global Bifurcation, Princeton Series in Applied Mathematics, vol. 55 (2003), Princeton University Press · Zbl 1021.47044
[31] Stein, E. M.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32 (1971), Princeton University Press · Zbl 0232.42007
[32] Prudnikov, A.; Brychkov, Y. A.; Marichev, O., Integrals and Series. Volume 1: Elementary Functions (1986), Gordon & Breach Science Publishers · Zbl 0733.00004
[33] Goebel, M.; Sachweh, F., On the autonomous Nemytskij operator in Hölder spaces, Z. Anal. Anwend., 18, 2, 205-229 (1999) · Zbl 0941.47053
[34] Kielhöfer, H., Bifurcation Theory, Applied Mathematical Sciences, vol. 156 (2012), Springer: Springer New York, NY · Zbl 1230.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.