×

Stabilization of a nonlinear Euler-Bernoulli beam. (English) Zbl 1502.35014

Summary: In this work, we study the vibration control of a flexible mechanical system. The dynamic of the problem is modeled as a viscoelastic nonlinear Euler-Bernoulli beam. To suppress the undesirable transversal vibrations of the beam, we adopt a control at the right boundary of the beam. This control law is simple to implement. We prove uniform stability of the system using a viscoelastic material, the multiplier method and some ideas introduced in [N.-E. Tatar, Appl. Math. Comput. 215, No. 6, 2298–2306 (2009; Zbl 1422.74022)]. It is shown that a large range of rates of decay of the energy can be achieved through a determined class of kernels. Unlike most of the existing classes in the market, ours are not necessarily strictly decreasing.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L35 Initial-boundary value problems for higher-order hyperbolic equations
35L76 Higher-order semilinear hyperbolic equations
35R09 Integro-partial differential equations
35R10 Partial functional-differential equations
74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Citations:

Zbl 1422.74022

References:

[1] Berkani, A., Tatar, N.-E., Seghour, L.: Stabilisation of a viscoelastic flexible marine riser under unknown spatiotemporally varying disturbance. Int. J. Control. doi:10.1080/00207179.2018.1518596. · Zbl 1452.35093
[2] Do, KD; Pan, J., Boundary control of transverse motion of marine risers with actuator dynamics, J. Sound Vib., 318, 4-5, 768-791 (2008) · doi:10.1016/j.jsv.2008.05.009
[3] Fard, M. P., Sagatun, S. I.: Boundary control of a transversely vibrating beam via lyapunov method, Proceedings of 5th IFAC Conference on Manoeuvring and Control of Marine Craft. Aalborg, Denmark, pp. 263-268, (2000a).
[4] Ge, S. S., He, W., B. V. E, How, Choo, Y. S.: Boundary control of a coupled nonlinear flexible marine riser. IEEE Trans. Control Syst. Technol. 18(5): 1080-1091 (2010)
[5] Guo, B-Z; Jin, F-F, The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance, Automatica, 49, 9, 2911-2918 (2013) · Zbl 1364.93637 · doi:10.1016/j.automatica.2013.06.018
[6] He, W.; Zhang, S., Control design for nonlinear flexible wings of a robotic aircraft, IEEE Trans. Control Syst. Technol, 25, 1, 351-357 (2017) · doi:10.1109/TCST.2016.2536708
[7] He, W.; Zhang, S.; Ge, SS, Adaptive boundary control of a nonlinear flexible string system, IEEE Trans. Control Syst. Technol., 22, 3, 1088-1093 (2014) · doi:10.1109/TCST.2013.2278279
[8] He, W.; Nie, SX; Meng, TT, Modeling and vibration control for a moving beam with application in a drilling riser, IEEE Trans. Control Syst. Technol, 25, 3, 1036-1043 (2017) · doi:10.1109/TCST.2016.2577001
[9] Kelleche, A.; Tatar, N-E; Khemmoudj, A., Stability of an axially moving viscoelastic beam, J Dyn. Control Syst. (2016) · Zbl 1378.35185 · doi:10.1007/s10883-016-9317-8
[10] Kelleche, A.; Berkani, A.; Tatar, N.-E, Uniform stabilization of a nonlinear axially moving string by a boundary control of memory type, J. Dyn. Control Syst., 24, 313-323 (2020) · Zbl 1391.35055 · doi:10.1007/s10883-017-9370-y
[11] Liu, Y.; Zhao, ZJ; He, W., Stabilization of an axially moving accelerated/ decelerated system via an adaptive boundary control, ISA Trans., 64, 394-404 (2016) · doi:10.1016/j.isatra.2016.04.006
[12] Nayfeh, A., Mook, D.: Nonlinear oscillations. Wiley-Interscience, New York (1979) · Zbl 0418.70001
[13] Nguyen, TL; Do, KD, Boundary control of two-dimensional marine risers with bending couplings, J. Sound Vib., 332, 16, 3605-3622 (2013) · doi:10.1016/j.jsv.2013.02.026
[14] Park, JY; Kim, JA, Existence and uniform decay for Euler-Bernoulli beam equation with memory term, Math. Method. Appl. Sci., 27, 14, 1629-1640 (2004) · Zbl 1078.35021 · doi:10.1002/mma.512
[15] Park, JY; Kang, YH; Kim, JA, Existence and exponential stability for a Euler-Bernoulli beam equation with memory and boundary out- put feedback control term, Acta. Appl. Math., 104, 3, 287-301 (2008) · Zbl 1168.35321 · doi:10.1007/s10440-008-9257-8
[16] Pata, V., Exponential stability in linear viscoelasticity, Q. Appl. Math., 64, 3, 499 (2006) · Zbl 1117.35052 · doi:10.1090/S0033-569X-06-01010-4
[17] Seghour, L., Khemmoudj, A., Tatar, N.-E.: Control of a riser through the dynamic of a vessel. Appl. Anal. 1957-1973 (2015) · Zbl 1355.35126
[18] Seghour, L.; Berkani, A.; Tatar, N-E; Saedpanah, F., Vibration control of a viscoelastic flexible marine riser with vessel dynamics, Math. Model. Anal., 23, 3, 433-452 (2018) · Zbl 1488.93138 · doi:10.3846/mma.2018.026
[19] Shahruz, SM; Narasimha, CA, Suppression of vibration in stretched strings by the boundary control, J. Sound Vib., 204, 5, 835-840 (1997) · Zbl 1235.74118 · doi:10.1006/jsvi.1997.0985
[20] Tatar, N-E, On a large class of kernels yielding exponential stability in viscoelasticity, Appl. Math. Comp., 215, 6, 2298-2306 (2009) · Zbl 1422.74022 · doi:10.1016/j.amc.2009.08.034
[21] Tatar, N-E, Arbitrary decays in linear viscoelasticity, J. Math. Phys., 52, 1, 013502 (2011) · Zbl 1314.74015 · doi:10.1063/1.3533766
[22] Tatar, N-E, A new class of kernels leading to an arbitrary decay in viscoelasticity, Meditter. J. Math., 10, 213-22 (2013) · Zbl 1262.35047 · doi:10.1007/s00009-012-0177-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.