×

Data-driven control for switched systems over a vulnerable and resource-constrained network. (English) Zbl 1501.93082

Summary: To alleviate the restriction of system model on control design, data-driven model-free adaptive control (MFAC) is an excellent alternative to model-based control methods. This paper studies event-triggered data-driven control for switched systems over a vulnerable and resource-constrained network. The system is transformed into an equivalent switched data model through dynamic linearization. Resource constraints and denial of service (DoS) attacks in the network are concerned, and a novel joint anti-attack method including resilient event-triggering mechanism and prediction scheme is presented. Furthermore, new event-triggered MFAC algorithms are proposed. In this scenario, by constructing a Lyapunov functional on tracking error, sufficient conditions to ensure its boundedness are derived. This is the first time in the literature to give a complete solution to data-driven control of switched systems. At last, the validity of new algorithms and theoretical results is confirmed by simulations.

MSC:

93C40 Adaptive control/observation systems
93C65 Discrete event control/observation systems
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Aghababa, M. P., Twofold sliding controller design for uncertain switched nonlinear systems, IEEE Trans. Syst., Man, Cybern., 51, 2, 1203-1214 (2021)
[2] Theunisse, T. A.F.; Chai, J.; Sanfelice, R. G.; Heemels, W. P.M. H., Robust global stabilization of the DC-DC boost converter via hybrid control, IEEE Trans. Circuits Syst. I, 62, 4, 1052-1061 (2015) · Zbl 1468.94244
[3] Zhu, K. W.; Zhao, J.; Dimirovski, G. M., \(H_\infty\) tracking control for switched LPV systems with an application to aero-engines, IEEE/CAA J. Autom. Sin., 5, 3, 699-705 (2018)
[4] Egidio, L. N.; Deaecto, G. S.; Hespanha, J. P.; Geromel, J. C., Trajectory tracking for a class of switched nonlinear systems: Application to PMSM, Nonlinear Anal., 44, 101164 (2022) · Zbl 1485.93273
[5] Chen, Y.; Wang, Y. E.; Wu, D., Hybrid state observer-based event-triggered control for switched linear systems with quantized input, J. Frankl. Inst., 358, 17, 9086-9109 (2021) · Zbl 1478.93384
[6] Chen, R. J.; Li, Y. N.; Liu, J., Computation of controlled invariant sets for discrete-time switched nonlinear systems with time-delay, J. Frankl. Inst., 358, 14, 7187-7202 (2021) · Zbl 1471.93166
[7] Hashjin-Mobarakeh, S. A.; Pang, S.; Nahid, B.; Miliani, E.-H.; Ait-Abderrahim, K., Data-driven model-free adaptive current control of a wound rotor synchronous machine drive system, IEEE Trans. Transp. Electrif., 6, 3, 1146-1156 (2020)
[8] Persis, C. D.; Tesi, P., Formulas for data-driven control: Stabilization, optimality, and robustness, IEEE Trans. Autom. Control, 65, 909-924 (2020) · Zbl 1533.93591
[9] Novara, C.; Rabbone, I.; Tinti, D., Data-driven disturbance estimation and control with application to blood glucose regulation, IEEE Trans. Control Syst. Technol., 28, 1, 48-62 (2020)
[10] Shen, M. Q.; Wu, X. Z.; Park, J. H.; Yi, Y.; Sun, Y. H., Iterative learning control of constrained systems with varying trial lengths under alignment condition, IEEE Trans. Neural Netw. Learn. Syst. (2021)
[11] Song, X. N.; Sun, P.; Song, S.; Stojanovic, V., Event-driven NN adaptive fixed-time control for nonlinear systems with guaranteed performance, J. Frankl. Inst., 359, 9, 4138-4159 (2022) · Zbl 1491.93082
[12] Jiang, Y.; Gao, W. N.; Na, J.; Zhang, D.; Hämäläinen, T. T.; Stojanovic, V.; Lewis, F. L., Value iteration and adaptive optimal output regulation with assured convergence rate, Control Eng. Pract., 121, 105042 (2022)
[13] Djordjevic, V.; Stojanovic, V.; Tao, H. F.; Song, X. N.; He, S. P.; Gao, W. N., Data-driven control of hydraulic servo actuator based on adaptive dynamic programming, Discrete Contin. Dyn. Syst. - Ser. S, 15, 7, 1633-1650 (2022) · Zbl 1500.90011
[14] Hou, Z. S., The Parameter Identification, Adaptive Control and Model Free Learning Adaptive Control for Nonlinear Systems (1994), Northeastern University, Shenyang, China, Ph.D. thesis
[15] Hui, Y.; Chi, R. H.; Huang, B.; Hou, Z. S.; Jin, S. T., Observer-based sampled-data model-free adaptive control for continuous-time nonlinear nonaffine systems with input rate constraints, IEEE Trans. Syst., Man, Cybern., 51, 12, 7813-7822 (2021)
[16] Zhang, H. G.; Zhou, J. G.; Sun, Q.; Guerrero, J. M.; Ma, D. Z., Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control, IEEE Trans. Smart Grid, 8, 2, 557-571 (2017)
[17] Tutsoy, O.; Barkana, D. E., Model free adaptive control of the under-actuated robot manipulator with the chaotic dynamics, ISA Trans., 118, 106-115 (2021)
[18] Xu, D. Z.; Shi, Y.; Ji, Z. C., Model-free adaptive discrete-time integral sliding-mode-constrained-control for autonomous 4WMV parking systems, IEEE Trans. Ind. Electron., 65, 1, 834-843 (2018)
[19] Wang, Y.; Wang, Z. S., Model free adaptive fault-tolerant tracking control for a class of discrete-time systems, Neurocomputing, 412, 143-151 (2020)
[20] Silm, H.; Ushirobira, R.; Efimov, D.; Fridman, E.; Richard, J.-P.; Michiels, W., Distributed observers with time-varying delays, IEEE Trans. Autom. Control, 66, 11, 5354-5361 (2021) · Zbl 1536.93895
[21] Cetinkaya, A.; Kikuchi, K.; Hayakawa, T.; Ishii, H., Randomized transmission protocols for protection against jamming attacks in multi-agent consensus, Automatica, 117, 108960 (2020) · Zbl 1441.93267
[22] Li, F. Z.; Liu, Y. G., Global adaptive stabilization via asynchronous event-triggered output-feedback, Automatica, 139, 110181 (2022) · Zbl 1485.93477
[23] Pang, Z. H.; Liu, G. P.; Zhou, D. H.; Sun, D. H., Data-based predictive control for networked non-linear systems with two-channel packet dropouts, IET Control Theory Appl., 9, 7, 1154-1161 (2015)
[24] Qiu, X. J.; Wang, Y. C.; Xie, X. P.; Zhang, H. G., Resilient model-free adaptive control for cyber-physical systems against jamming attack, Neurocomputing, 413, 422-430 (2020)
[25] Chen, C. Y.; Chen, Y.; Zhao, J. B.; Zhang, K. F.; Ni, M.; Ren, B. X., Data-driven resilient automatic generation control against false data injection attacks, IEEE Trans. Ind. Inform., 17, 12, 8092-8101 (2021)
[26] Heemels, W. P.M. H.; Donkers, M. C.F.; Teel, A. R., Periodic event-triggered control for linear systems, IEEE Trans. Autom. Control, 58, 4, 847-861 (2013) · Zbl 1369.93363
[27] Wang, X. D.; Fei, Z. Y.; Yan, H. C.; Xu, Y. L., Dynamic event-triggered fault detection via zonotopic residual evaluation and its application to vehicle lateral dynamics, IEEE Trans. Ind. Inform., 16, 11, 6952-6961 (2020)
[28] Qi, Y. W.; Zeng, P. Y.; Bao, W., Event-triggered and self-triggered \(H_\infty\) control of uncertain switched linear systems, IEEE Trans. Syst., Man, Cybern., 50, 4, 1442-1454 (2020)
[29] Hu, S. L.; Yuan, P.; Yue, D.; Dou, C. X.; Cheng, Z. H.; Zhang, Y. N., Attack-resilient event-triggered controller design of DC microgrids under dos attacks, IEEE Trans. Circuits Syst. I, 67, 2, 699-710 (2020) · Zbl 1469.94243
[30] Qi, Y. W.; Yuan, S.; Niu, B., Asynchronous control for switched T-S fuzzy systems subject to data injection attacks via adaptive event-triggering schemes, IEEE Trans. Syst., Man, Cybern., 52, 7, 4658-4670 (2022)
[31] Lin, N.; Chi, R. H.; Huang, B., Event-triggered model-free adaptive control, IEEE Trans. Syst., Man, Cybern., 51, 6, 3358-3369 (2021)
[32] Wang, X. M.; Qin, W.; Park, J. H.; Shen, M. Q., Event-triggered data-driven control of discrete-time nonlinear systems with unknown disturbance, ISA Trans. (2021)
[33] Wang, Y. C.; Qiu, X. J.; Zhang, H. G.; Xie, X. P., Data-driven-based event-triggered control for nonlinear CPSs against jamming attacks, IEEE Trans. Neural Netw. Learn. Syst., 33, 7, 3171-3177 (2022)
[34] Qi, Y. W.; Zhao, X. J.; Huang, J., Data-driven event-triggered control for switched systems based on neural network disturbance compensation, Neurocomputing, 490, 370-379 (2022)
[35] Yu, W.; Wang, R.; Bu, X. H.; Hou, Z. S., Model free adaptive control for a class of nonlinear systems with fading measurements, J. Frankl. Inst., 357, 12, 7743-7760 (2020) · Zbl 1447.93186
[36] Chen, Y. C.; Tang, C. M.; Roohi, M., Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: An application in secure communications, J. Frankl. Inst., 358, 16, 8109-8137 (2021) · Zbl 1472.93020
[37] Hou, Z. S.; Bu, X. H., Model free adaptive control with data dropouts, Expert Syst. Appl., 38, 8, 10709-10717 (2011)
[38] Yue, D.; Tian, E. G.; Han, Q. L., A delay system method for designing event-triggered controllers of networked control systems, IEEE Trans. Autom. Control, 58, 2, 475-481 (2013) · Zbl 1369.93183
[39] Persis, C. D.; Tesi, P., Input-to-state stabilizing control under denial-of-service, IEEE Trans. Autom. Control, 60, 11, 2930-2944 (2015) · Zbl 1360.93629
[40] Hespanha, J. P.; Morse, A. S., Stability of switched systems with average dwell-time, vol. 3, 2655-2660 (1999)
[41] Qi, Y. W.; Liu, Y. H.; Fu, J.; Zeng, P. Y., Event-triggered \(L_\infty\) control for network-based switched linear systems with transmission delay, Syst. Control Lett., 134, 104533 (2019) · Zbl 1428.93055
[42] Yu, W.; Wang, R.; Bu, X. H.; Hou, Z. S.; Wu, Z. H., Resilient model-free adaptive iterative learning control for nonlinear systems under periodic dos attacks via a fading channel, IEEE Trans. Syst., Man, Cybern., 52, 7, 4117-4128 (2022)
[43] Pillay, P.; Krishnan, R., Modeling of permanent magnet motor drives, IEEE Trans. Ind. Electron., 35, 4, 537-541 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.