×

Data-driven multiscale method for composite plates. (English) Zbl 1501.74066

Summary: Composite plates are widely used in many engineering fields such as aerospace and automotive. An accurate and efficient multiscale modeling and simulation strategy is of paramount importance to improve design and manufacture. To this end, we propose an efficient data-driven computing scheme based on the classical plate theory for the multiscale analysis of composite plates. In order to accurately describe the relationship between the macroscopic mechanical properties and the microscopic architecture, the multiscale finite element method (\(\mathrm{FE}^2\)) is adopted to compute the generalized strain and stress fields. These data are then used to construct a database for data-driven computing. Since the database is offline populated, the data-driven computing scheme allows for a reduced computational cost when compared to the traditional multiscale method, where the concurrent coupling of different scales is still a burden. And data are obtained from a reduced structural model for computational efficiency. The proposed scheme is therefore addressed as Structural-Genome-Driven (SGD) modeling of plates. Compared to the general data-driven computational mechanics modeling of plates, SGD is found to be more efficient since the number of integration points is significantly reduced. This scheme provides a robust alternative computational tool for composite plate structures analysis.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
74K20 Plates
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] McCarthy, MA; Harte, CG; Wiggenraad, JFM; Michielsen, ALPJ; Kohlgrueber, D.; Kamoulakos, A., Finite element modelling of crash response of composite aerospace sub-floor structures, Comput Mech, 26, 250-258 (2000) · doi:10.1007/s004660000177
[2] Fantuzzi, N.; Bacciocchi, M.; Benedetti, D.; Agnelli, J., The use of sustainable composites for the manufacturing of electric cars, Compos C Open Access, 4, 100096 (2021) · doi:10.1016/j.jcomc.2020.100096
[3] Hui, Y.; Xu, R.; Giunta, G.; De Pietro, G.; Hu, H.; Belouettar, S.; Carrera, E., Multiscale CUF-\(FE^2\) nonlinear analysis of composite beam structures, Comput Struct, 221, 28-43 (2019) · doi:10.1016/j.compstruc.2019.05.013
[4] Gravemeier, V.; Lenz, S.; Wall, WA, Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods, Comput Mech, 41, 279-291 (2008) · Zbl 1162.74514 · doi:10.1007/s00466-007-0185-7
[5] Chen, Y.; Ma, Y.; Pan, F.; Wang, S., Research progress in multi-scale mechanics of composite materials, Chin J Solid Mech, 39, 1-68 (2018)
[6] Raju, K.; Tay, TE; Tan, VBC, A review of the \(FE^2\) method for composites, Multiscale Multidiscip Model Exp Des, 25, 1-24 (2021) · doi:10.1007/s41939-020-00087-x
[7] Green, SD; Matveev, MY; Long, AC; Ivanov, D.; Hallett, SR, Mechanical modelling of 3D woven composites considering realistic unit cell geometry, Compos Struct, 118, 284-293 (2014) · doi:10.1016/j.compstruct.2014.07.005
[8] Fantuzzi, N.; Bacciocchi, M.; Agnelli, J.; Benedetti, D., Three-phase homogenization procedure for woven fabric composites reinforced by carbon nanotubes in thermal environment, Compos Struct, 254 (2020) · doi:10.1016/j.compstruct.2020.112840
[9] Aranda-Iglesias, D.; Giunta, G.; Peronnet-Paquin, A.; Sportelli, F.; Keniray, D.; Belouettar, S., Multiscale modelling of the mechanical response of 3D multi-axial knitted 3D spacer composites, Compos Struct, 257 (2021) · doi:10.1016/j.compstruct.2020.113139
[10] Adhikari, S.; Mukhopadhyay, T.; Liu, X., Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approach, Mech Mater, 157, 103796 (2021) · doi:10.1016/j.mechmat.2021.103796
[11] Feyel, F., Multiscale \(FE^2\) elastoviscoplastic analysis of composite structures, Comput Mater Sci, 16, 344-354 (1999) · doi:10.1016/S0927-0256(99)00077-4
[12] Nezamabadi, S.; Yvonnet, J.; Zahrouni, H.; Potier-Ferry, M., A multilevel computational strategy for handling microscopic and macroscopic instabilities, Comput Methods Appl Mech Eng, 198, 2099-2110 (2009) · Zbl 1227.74026 · doi:10.1016/j.cma.2009.02.026
[13] Tchalla, A.; Belouettar, S.; Makradi, A.; Zahrouni, H., An ABAQUS toolbox for multiscale finite element computation, Compos B Eng, 52, 323-333 (2013) · doi:10.1016/j.compositesb.2013.04.028
[14] Koyanagi, J.; Kawamoto, K.; Higuchi, R.; Tan, VBC; Tay, TE, Direct \(FE^2\) for simulating strain-rate dependent compressive failure of cylindrical CFRP, Compos C, 256, 100165 (2021)
[15] Xu, R.; Bouby, C.; Zahrouni, H.; Zineb, TB; Hu, H.; Potier-Ferry, M., 3D modeling of shape memory alloy fiber reinforced composites by multiscale finite element method, Compos Struct, 200, 408-419 (2018) · doi:10.1016/j.compstruct.2018.05.108
[16] Xu, R.; Hui, Y.; Hu, H.; Huang, Q.; Zahrouni, H.; Zineb, TB; Potier-Ferry, M., A Fourier-related \(FE^2\) multiscale model for instability phenomena of long fiber reinforced materials, Compos Struct, 211, 530-539 (2019) · doi:10.1016/j.compstruct.2018.12.028
[17] Montáns, FJ; Chinesta, F.; Gómez-Bombarelli, R.; Kutz, JN, Data-driven modeling and learning in science and engineering, Comptes Rendus Mécanique, 347, 845-855 (2019) · doi:10.1016/j.crme.2019.11.009
[18] Kirchdoerfer, T.; Ortiz, M., Data-driven computational mechanic, Comput Methods Appl Mech Eng, 304, 81-101 (2016) · Zbl 1425.74503 · doi:10.1016/j.cma.2016.02.001
[19] Leygue, A.; Seghir, R.; Réthoré, J.; Coret, M.; Verron, E.; Stainier, L., Non-parametric material state field extraction from full field measurements, Comput Mech, 64, 501-509 (2019) · Zbl 1464.74023 · doi:10.1007/s00466-019-01725-z
[20] Yang, J.; Xu, R.; Huang, Q.; Shao, Q.; Huang, W.; Hu, H., Data-driven computational mechanics: a review, Chin J Solid Mech, 41, 1-14 (2020)
[21] Ibañez, R.; Borzacchiello, D.; Aguado, JV; Abisset-Chavanne, E.; Cueto, E.; Ladeveze, P.; Chinesta, F., Data-driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput Mech, 60, 813-826 (2017) · Zbl 1387.74015 · doi:10.1007/s00466-017-1440-1
[22] Yvonnet, J.; He, QC, The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J Comput Phys, 223, 341-368 (2007) · Zbl 1163.74048 · doi:10.1016/j.jcp.2006.09.019
[23] Yvonnet, J.; Gonzalez, D.; He, QC, Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Comput Methods Appl Mech Eng, 198, 2723-2737 (2009) · Zbl 1228.74067 · doi:10.1016/j.cma.2009.03.017
[24] Le, BA; Yvonnet, J.; He, QC, Computational homogenization of nonlinear elastic materials using neural networks, Int J Numer Methods Eng, 104, 1061-1084 (2015) · Zbl 1352.74266 · doi:10.1002/nme.4953
[25] Bessa, MA; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, DW; Brinson, C.; Chen, W.; Liu, WK, A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality, Comput Methods Appl Mech Eng, 320, 633-667 (2017) · Zbl 1439.74014 · doi:10.1016/j.cma.2017.03.037
[26] Huang, JS; Liew, JX; Liew, KM, Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites, Compos Struct, 267 (2021) · doi:10.1016/j.compstruct.2021.113917
[27] Yang, J.; Xu, R.; Hu, H.; Huang, Q.; Huang, W., Structural-Genome-Driven computing for composite structures, Compos Struct, 215, 446-453 (2019) · doi:10.1016/j.compstruct.2019.02.064
[28] Xu, R.; Yang, J.; Yan, W.; Huang, Q.; Giunta, G.; Belouettar, S.; Zahrouni, H.; Zineb, TB; Hu, H., Data-driven multiscale finite element method: from concurrence to separation, Comput Methods Appl Mech Eng, 363, 112893 (2020) · Zbl 1436.74077 · doi:10.1016/j.cma.2020.112893
[29] Huang, W.; Xu, R.; Yang, J.; Huang, Q.; Hu, H., Data-driven multiscale simulation of FRP based on material twins, Compos Struct, 256, 113013 (2021) · doi:10.1016/j.compstruct.2020.113013
[30] He, Q.; Chen, JS, A physics-constrained data-driven approach based on locally convex reconstruction for noisy database, Comput Methods Appl Mech Eng, 363, 112791 (2020) · Zbl 1436.62725 · doi:10.1016/j.cma.2019.112791
[31] Yang, H.; Qiu, H.; Xiang, Q.; Tang, S.; Guo, X., Exploring elastoplastic constitutive law of microstructured materials through artificial neural network-A mechanistic-based data-driven approach, J Appl Mech, 87, 091005 (2020) · doi:10.1115/1.4047208
[32] Liu, Z.; Bessa, MA; Liu, WK, Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials, Comput Methods Appl Mech Eng, 306, 319-341 (2016) · Zbl 1436.74070 · doi:10.1016/j.cma.2016.04.004
[33] Liu, Z.; Fleming, M.; Liu, WK, Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials, Comput Methods Appl Mech Eng, 330, 547-577 (2018) · Zbl 1439.74063 · doi:10.1016/j.cma.2017.11.005
[34] Kirchdoerfer, T.; Ortiz, M., Data-driven computing in dynamics, Int J Numer Methods Eng, 113, 1697-1710 (2018) · Zbl 07868547 · doi:10.1002/nme.5716
[35] Eggersmann, R.; Kirchdoerfer, T.; Reese, S.; Stainier, L.; Ortiz, M., Model-free data-driven inelasticity, Comput Methods Appl Mech Eng, 350, 81-99 (2019) · Zbl 1441.74048 · doi:10.1016/j.cma.2019.02.016
[36] Nguyen, LTK; Keip, MA, A data-driven approach to nonlinear elasticity, Comput Struct, 194, 97-115 (2018) · doi:10.1016/j.compstruc.2017.07.031
[37] Platzer, A.; Leygue, A.; Stainier, L.; Ortiz, M., Finite element solver for data-driven finite strain elasticity, Comput Methods Appl Mech Eng, 379, 113756 (2021) · Zbl 1506.74430 · doi:10.1016/j.cma.2021.113756
[38] Huang, W.; Causse, P.; Brailovski, V.; Hu, H.; Trochu, F., Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling, Compos A Appl Sci Manuf, 124, 105481 (2019) · doi:10.1016/j.compositesa.2019.105481
[39] Huang, W.; Causse, P.; Hu, H.; Trochu, F., Numerical and experimental investigation of saturated transverse permeability of 2D woven glass fabrics based on material twins, Polym Compos, 41, 1341-1355 (2020) · doi:10.1002/pc.25458
[40] Huang, W.; Causse, P.; Hu, H.; Belouettar, S.; Trochu, F., Transverse compaction of 2D glass woven fabrics based on material twins-Part I: geometric analysis, Compos Struct, 237, 111929 (2020) · doi:10.1016/j.compstruct.2020.111929
[41] Huang, W.; Causse, P.; Hu, H.; Belouettar, S.; Trochu, F., Transverse compaction of 2D glass woven fabrics based on material twins-Part II: tow and fabric deformations, Compos Struct, 237, 111963 (2020) · doi:10.1016/j.compstruct.2020.111963
[42] Stainier, L.; Leygue, A.; Ortiz, M., Model-free data-driven methods in mechanics: material data identification and solvers, Comput Mech, 64, 381-393 (2019) · Zbl 1470.74077 · doi:10.1007/s00466-019-01731-1
[43] Huang, Q.; Choe, J.; Yang, J.; Hui, Y.; Xu, R.; Hu, H., An efficient approach for post-buckling analysis of sandwich structures with elastic-plastic material behavior, Int J Eng Sci, 142, 20-35 (2019) · Zbl 1425.74193 · doi:10.1016/j.ijengsci.2019.05.018
[44] Klarmann, S.; Gruttmann, F.; Klinkel, S., Homogenization assumptions for coupled multiscale analysis of structural elements: beam kinematics, Comput Mech, 65, 635-661 (2020) · Zbl 1477.74095 · doi:10.1007/s00466-019-01787-z
[45] Yu, K.; Hu, H.; Tang, H.; Giunta, G.; Potier-Ferry, M.; Belouettar, S., A novel two-dimensional finite element to study the instability phenomena of sandwich plates, Comput Methods Appl Mech Eng, 283, 1117-1137 (2015) · Zbl 1423.74939 · doi:10.1016/j.cma.2014.08.006
[46] Liew, KM; Pan, ZZ; Zhang, LW, An overview of layerwise theories for composite laminates and structures: development, numerical implementation and application, Compos Struct, 216, 240-259 (2019) · doi:10.1016/j.compstruct.2019.02.074
[47] Kuang, Z.; Huang, Q.; Huang, W.; Yang, J.; Zahrouni, H.; Potier-Ferry, M.; Hu, H., A computational framework for multi-stability analysis of laminated shells, J Mech Phys Solids, 256, 104317 (2021) · doi:10.1016/j.jmps.2021.104317
[48] Liew, KM; Alibeigloo, A., Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities, Compos Struct, 256, 113039 (2021) · doi:10.1016/j.compstruct.2020.113039
[49] Hu, H.; Belouettar, S.; Potier-Ferry, M.; Makradi, A.; Koutsawa, Y., Assessment of various kinematic models for instability analysis of sandwich beams, Eng Struct, 33, 572-579 (2011) · doi:10.1016/j.engstruct.2010.11.015
[50] Hui, Y.; Giunta, G.; Belouettar, S.; Huang, Q.; Hu, H.; Carrera, E., A free vibration analysis of three-dimensional sandwich beams using hierarchical one-dimensional finite elements, Compos B Eng, 110, 7-19 (2017) · doi:10.1016/j.compositesb.2016.10.065
[51] Liu, X.; Yu, W., A novel approach to analyze beam-like composite structures using mechanics of structure genome, Adv Eng Softw, 100, 238-251 (2016) · doi:10.1016/j.advengsoft.2016.08.003
[52] Huang W, Yan W, Xu R, Huang Q, Yang J, Trochu F, Hu H (2021) Wrinkling analysis of circular membranes by a Fourier based reduced model. Thin-Walled Struct 161:107512
[53] Yang J, Huang Q, Hu H, Giunta G, Belouettar S, Potier-Ferry M (2015) A new family of finite elements for wrinkling analysis of thin films on compliant substrates. Compos Struct 119:568-577
[54] Shao, Q.; Liu, J.; Huang, Q.; Yang, J.; Hu, H.; Belouettar, S.; Giunta, G., A data-driven analysis on bridging techniques for heterogeneous materials and structures, Mech Adv Mater Struct, 28, 1-15 (2021) · doi:10.1080/15376494.2018.1546415
[55] Touratier, M., An efficient standard plate theory, Int J Eng Sci, 29, 901-916 (1991) · Zbl 0825.73299 · doi:10.1016/0020-7225(91)90165-Y
[56] Reddy, JN, Mechanics of laminated composite plates and shells: theory and analysis (2003), Boca Raton: CRC Press, Boca Raton · doi:10.1201/b12409
[57] Kirchdoerfer, T.; Ortiz, M., Data driven computing with noisy material data sets, Comput Methods Appl Mech Eng, 326, 622-641 (2017) · Zbl 1464.62282 · doi:10.1016/j.cma.2017.07.039
[58] Taylor, RL; Beresford, PJ; Wilson, EL, A non-conforming element for stress analysis, Int J Numer Methods Eng, 10, 1211-1219 (1976) · Zbl 0338.73041 · doi:10.1002/nme.1620100602
[59] Yang, J.; Bai, X.; Yan, W.; Huang, W.; Huang, Q.; Shao, Q.; Hu, H., An efficient hierarchical data searching scheme for data-driven computational mechanics, Chin J Solid Mech, 42, 241-248 (2021)
[60] Talbi, EG, Metaheuristics: from design to implementation (2009), New York: Wiley, New York · Zbl 1190.90293 · doi:10.1002/9780470496916
[61] Kouznetsova, VG; Geers, MGD; Brekelmans, WAM, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput Methods Appl Mech Eng, 193, 5525-5550 (2004) · Zbl 1112.74469 · doi:10.1016/j.cma.2003.12.073
[62] Ameen, MM; Peerlings, RHJ; Geers, MGD, A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization, Eur J Mech-A/Solids, 71, 89-100 (2018) · Zbl 1406.74553 · doi:10.1016/j.euromechsol.2018.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.