×

Semicontinuity of solutions and well-posedness under perturbations for equilibrium problems with nonlinear inequality constraints. (English) Zbl 1501.49017

In this paper the authors consider multivalued maps, or better set valued maps, and define upper and lower semicontinuity for these kind of maps. A set valued maps in which in particular the authors are interested in the following situation: given two functions \(f: A \times \Lambda \to\mathbb{R}\) and \(g: A \times A \times \Lambda \to \mathbb{R}\), where \(A\) is a nonempty compact and convex subset of a topological vector space, they consider \[ C(\lambda):=\{x\in A\mid f(x,\lambda)\geq 0\} \] and \[ S(\lambda):=\{x\in C(\lambda)\mid g(x,y,\lambda)\leq 0\,\forall y\in C (\lambda)\}. \] The authors define (EP) the problem of showing that, given, \(f, g, C\), the set \(S (\lambda)\) is not empty.
The authors prove some properties of the function \(C\) and use them to give sufficient conditions for \(S\) to be upper or lower semicontinuous. Then they give a notion of well posedness under some suitable perturbations and prove that problem (EP) is well posed in this sense.

MSC:

49K40 Sensitivity, stability, well-posedness
90C31 Sensitivity, stability, parametric optimization
91B50 General equilibrium theory
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI

References:

[1] Alleche, B., On hemicontinuity of bifunctions for solving equilibrium problems, Adv. Nonlinear Anal., 3, 2, 69-80 (2014) · Zbl 1287.49008
[2] Alleche, B.; Rădulescu, VD, Solutions and approximate solutions of quasi-equilibrium problems in Banach spaces, J. Optim. Theory Appl., 170, 2, 629-649 (2016) · Zbl 1351.47040 · doi:10.1007/s10957-015-0854-1
[3] Anh, LQ; Khanh, PQ; Tam, TN, On Hölder continuity of solution maps of parametric primal and dual Ky Fan inequalities, TOP, 23, 1, 151-167 (2015) · Zbl 1312.49048 · doi:10.1007/s11750-014-0332-1
[4] Anh, LQ; Khanh, PQ, Various kinds of semicontinuity and the solution sets of parametric multivalued symmetric vector quasiequilibrium problems, J. Glob. Optim., 41, 4, 539-558 (2008) · Zbl 1165.90026 · doi:10.1007/s10898-007-9264-8
[5] Anh, LQ; Khanh, PQ, Hölder continuity of the unique solution to quasiequilibrium problems in metric spaces, J. Optim. Theory Appl., 141, 1, 37-54 (2009) · Zbl 1176.90584 · doi:10.1007/s10957-008-9508-x
[6] Anh, LQ; Khanh, PQ, Continuity of solution maps of parametric quasiequilibrium problems, J. Glob. Optim., 46, 2, 247-259 (2010) · Zbl 1187.90284 · doi:10.1007/s10898-009-9422-2
[7] Anh, LQ; Duoc, PT; Tam, TN, On Hölder continuity of solution maps to parametric vector primal and dual equilibrium problems, Optimization, 67, 8, 1169-1182 (2018) · Zbl 1396.49017 · doi:10.1080/02331934.2018.1466298
[8] Anh, PN; An, LTH, New subgradient extragradient methods for solving monotone bilevel equilibrium problems, Optimization, 68, 11, 2099-2124 (2019) · Zbl 1430.90529 · doi:10.1080/02331934.2019.1656204
[9] Ansari, Q.; Konnov, I.; Yao, J., Existence of a solution and variational principles for vector equilibrium problems, J. Optim. Theory Appl., 110, 3, 481-492 (2001) · Zbl 0988.49004 · doi:10.1023/A:1017581009670
[10] Aubin, J.; Frankowska, H., Set-Valued Analysis (1990), Berlin: Springer, Berlin · Zbl 0713.49021
[11] Avriel, M., Diewert, W.E., Schaible, S., Ziemba, W.T.: Introduction to concave and generalized concave functions. In: Generalized Concavity in Optimization and Economics, pp. 21-50 (1981) · Zbl 0539.90087
[12] Bigi, G.; Castellani, M.; Pappalardo, M.; Passacantando, M., Nonlinear Programming Techniques for Equilibria (2019), Berlin: Springer, Berlin · Zbl 06954058 · doi:10.1007/978-3-030-00205-3
[13] Blum, E., From optimization and variational inequalities to equilibrium problems, Math. Stud., 63, 123-145 (1994) · Zbl 0888.49007
[14] Blumenthal, LM, Two existence theorems for systems of linear inequalities, Pac. J. Math., 2, 4, 523-530 (1952) · Zbl 0049.12302 · doi:10.2140/pjm.1952.2.523
[15] Castellani, M.; Pappalardo, M.; Passacantando, M., Existence results for nonconvex equilibrium problems, Optim. Methods Soft., 25, 1, 49-58 (2010) · Zbl 1190.90234 · doi:10.1080/10556780903151557
[16] Chen, B.; Huang, NJ, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56, 4, 1515-1528 (2013) · Zbl 1270.49015 · doi:10.1007/s10898-012-9904-5
[17] Hadjisavvas, N.; Schaible, S., On strong pseudomonotonicity and (semi) strict quasimonotonicity, J. Optim. Theory Appl., 79, 1, 139-155 (1993) · Zbl 0792.90068 · doi:10.1007/BF00941891
[18] Hai, NX; Khanh, PQ; Quan, NH, On the existence of solutions to quasivariational inclusion problems, J. Glob. Optim., 45, 4, 565 (2009) · Zbl 1190.49009 · doi:10.1007/s10898-008-9390-y
[19] Hu, S.; Papageorgiou, N., Handbook of Multivalued Analysis, Vol. I: Theory (1997), Dordrecht: Kluwer, Dordrecht · Zbl 0887.47001 · doi:10.1007/978-1-4615-6359-4
[20] Iusem, AN; Mohebbi, V., Extragradient methods for vector equilibrium problems in Banach spaces, Numer. Funct. Anal. Optim., 40, 9, 993-1022 (2019) · Zbl 1412.90108 · doi:10.1080/01630563.2019.1578232
[21] Jafari, S.; Farajzadeh, A.; Moradi, S.; Khanh, P., Existence results for-quasimonotone equilibrium problems in convex metric spaces, Optimization, 66, 3, 293-310 (2017) · Zbl 1391.90588 · doi:10.1080/02331934.2016.1274989
[22] Jolaoso, LO; Alakoya, T.; Taiwo, A.; Mewomo, O., Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization, 70, 2, 387-412 (2021) · Zbl 1459.65097 · doi:10.1080/02331934.2020.1716752
[23] Kassay, G.; Rădulescu, VD, Equilibrium Problems and Applications (2018), New York: Academic Press, New York · Zbl 1448.47005
[24] Kimura, K.; Yao, J., Semicontinuity of solution mappings of parametric generalized vector equilibrium problems, J. Optim. Theory Appl., 138, 3, 429-443 (2008) · Zbl 1162.47044 · doi:10.1007/s10957-008-9386-2
[25] Li, X.; Long, X.; Zeng, J., Hölder continuity of the solution set of the Ky Fan inequality, J. Optim. Theory Appl., 158, 2, 397-409 (2013) · Zbl 1272.90113 · doi:10.1007/s10957-012-0249-5
[26] Mansour, MA; Scrimali, L., Hölder continuity of solutions to elastic traffic network models, J. Glob. Optim., 40, 1-3, 175-184 (2008) · Zbl 1151.90008 · doi:10.1007/s10898-007-9190-9
[27] Muu, L.; Oettli, W., Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal., 18, 12, 1159-1166 (1992) · Zbl 0773.90092 · doi:10.1016/0362-546X(92)90159-C
[28] Ounaies, S.; Bonnisseau, JM; Chebbi, S., Equilibrium of a production economy with non-compact attainable allocations set, Adv. Nonlinear Anal., 8, 1, 979-994 (2019) · Zbl 1417.91329 · doi:10.1515/anona-2017-0234
[29] Papageorgiou, NS; Rădulescu, VD; Repovš, DD, Relaxation methods for optimal control problems, Bull. Math. Sci., 10, 1, 2050004 (2020) · Zbl 1467.49012 · doi:10.1142/S1664360720500046
[30] Sadeqi, I.; Alizadeh, C., Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces, Nonlinear Anal., 74, 6, 2226-2234 (2011) · Zbl 1233.90266 · doi:10.1016/j.na.2010.11.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.