×

Asymptotic mean value formulas, nonlocal space-time parabolic operators and anomalous tug-of-war games. (English) Zbl 1501.35435

Summary: The fractional heat operator \(( \partial_t - \Delta_x )^s\) and Continuous Time Random Walks (CTRWs) are interesting and sophisticated mathematical models that can describe complex anomalous systems. In this paper, we prove asymptotic mean value representation formulas for functions with respect to \(( \partial_t - \Delta_x )^s\) and we introduce new nonlocal, nonlinear parabolic operators related to a tug-of-war which accounts for waiting times and space-time couplings. These nonlocal, nonlinear parabolic operators and equations can be seen as nonlocal versions of the evolutionary infinity Laplace operator.

MSC:

35R11 Fractional partial differential equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] Baeumer, B.; Kovács, M.; Meerschaert, M.; Schilling, R.; Straka, P., Reflected spectrally negative stable processes and their governing equations, Trans. Am. Math. Soc., 368, 1, 227-248 (2016) · Zbl 1378.60075
[2] Baeumer, B.; Meerschaert, M.; Mortensen, J., Space-time fractional derivative operators, Proc. Am. Math. Soc., 133, 8, 2273-2282 (2005) · Zbl 1070.47043
[3] Balakrishnan, A., An operational calculus for infinitesimal generators of semigroups, Trans. Am. Math. Soc., 91, 2, 330-353 (1959) · Zbl 0090.09701
[4] Balakrishnan, A. V., Fractional powers of closed operators and the semigroups generated by them, Pac. J. Math., 10, 2, 419-437 (1960) · Zbl 0103.33502
[5] Becker-Kern, P.; Meerschaert, M. M.; Scheffler, H.-P., Limit theorems for coupled continuous time random walks, Ann. Probab., 32, 1B, 730-756 (2004) · Zbl 1054.60052
[6] Biswas, A.; De León-Contreras, M.; Stinga, P. R., Harnack inequalities and Hölder estimates for master equations, SIAM J. Math. Anal., 53, 2, 2319-2348 (2021) · Zbl 1462.35103
[7] Bjorland, C.; Caffarelli, L.; Figalli, A., Non-local gradient dependent operators, Adv. Math., 230, 4-6, 1859-1894 (2012) · Zbl 1252.35099
[8] Bjorland, C.; Caffarelli, L.; Figalli, A., Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65, 3, 337-380 (2012) · Zbl 1235.35278
[9] Bucur, C.; Squassina, M., Asymptotic mean value properties for fractional anisotropic operators, J. Math. Anal. Appl., 466, 1, 107-126 (2018) · Zbl 1394.35546
[10] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 8, 1245-1260 (2007) · Zbl 1143.26002
[11] del Teso, F.; Endal, J.; Lewicka, M., On asymptotic expansions for the fractional infinity Laplacian, Asymptot. Anal., 127, 3, 201-216 (2022) · Zbl 1509.35321
[12] Garofalo, N., Fractional thoughts, (New Developments in the Analysis of Nonlocal Operators. New Developments in the Analysis of Nonlocal Operators, Contemporary Mathematics, vol. 723 (2019), American Mathematical Society), 1-137 · Zbl 1423.35397
[13] Herman, J.; Johnston, I.; Toniazzi, L., Space-time coupled evolution equations and their stochastic solutions, Electron. J. Probab., 25, 1-21 (2020) · Zbl 1469.35222
[14] Kemppainen, J.; Siljander, J.; Vergara, V.; Zacher, R., Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb{R}^d\), Math. Ann., 366, 3, 941-979 (2016) · Zbl 1354.35178
[15] Kemppainen, J.; Siljander, J.; Zacher, R., Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equ., 263, 1, 149-201 (2017) · Zbl 1366.35218
[16] Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M. M.; Ainsworth, M., What is the fractional Laplacian? (2018), arXiv preprint
[17] Litsgård, M.; Nyström, K., Fractional powers of parabolic operators with time-dependent measurable coefficients (2021), arXiv preprint
[18] Manfredi, J. J.; Parviainen, M.; Rossi, J. D., An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42, 5, 2058-2081 (2010) · Zbl 1231.35107
[19] Meerschaert, M. M.; Scalas, E., Coupled continuous time random walks in finance, Phys. A, Stat. Mech. Appl., 370, 1, 114-118 (2006)
[20] Meerschaert, M. M.; Sikorskii, A., Stochastic Models for Fractional Calculus (2012), De Gruyter · Zbl 1247.60003
[21] Meerschaert, M. M.; Straka, P., Semi-Markov approach to continuous time random walk limit processes, Ann. Probab., 42, 4, 1699-1723 (2014) · Zbl 1305.60089
[22] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[23] Nyström, K.; Sande, O., Extension properties and boundary estimates for a fractional heat operator, Nonlinear Anal., 140, 29-37 (2016) · Zbl 1381.35230
[24] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 1, 167-210 (2009) · Zbl 1206.91002
[25] Samko, S., Hypersingular Integrals and Their Applications (2001), CRC Press
[26] Stinga, P. R.; Torrea, J. L., Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation, SIAM J. Math. Anal., 49, 5, 3893-3924 (2017) · Zbl 1386.35419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.