×

Quasilinear Schrödinger-Poisson equations involving a nonlocal term and an integral constraint. (English) Zbl 1501.35137

Summary: In this paper, we consider a class of quasilinear Schrödinger-Poisson problems of the form \[ \begin{cases} - \left({a + b\displaystyle\int_{{\mathbb{R}^N}} {{{\left| {\nabla u} \right|}^2}dx}} \right)\Delta u + V(x)u + \phi u - \displaystyle\frac{1}{2}u\Delta ({u^2}) - \lambda{{\left| u \right|}^{p - 2}}u = 0 & {{\text{in }}{\mathbb{R}^N},} \\ { - \Delta \phi = {u^2},\,\,\,\,\,u(x) \to 0,\,\,\,\,\,\left| x \right| \to \infty }& {{\text{in }}{\mathbb{R}^N},}\\ \displaystyle{\int_{{\mathbb{R}^N}} {{\left| u \right|}^p}dx = 1,} \end{cases} \] where \(a > 0\), \(b \geq 0\), \(N \geq 3\), \(\lambda\) appears as a Lagrangian multiplier, and \(4 < p < 2 \cdot{2^\ast} = \frac{4N}{N - 2}\). We deal with two different cases simultaneously, namely \(\lim_{ \mid x \mid \rightarrow \infty }V(x) = \infty\) and \(\lim_{\mid x \mid \rightarrow \infty }V(x) = V_\infty \). By using the method of invariant sets of the descending flow combined with the genus theory, we prove the existence of infinitely many sign-changing solutions. Our results extend and improve some recent work.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J10 Schrödinger operator, Schrödinger equation
35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Ambrosetti, A.; Ruiz, R., Multiple bound states for the Schrödinger-Poisson problem, Commun Contemp Math, 10, 391-404 (2008) · Zbl 1188.35171
[2] Bahri, A.; Lions, P. L., Morse index of some min-max critical points. I. Application to multiplicity results, Commun Pure Appl Anal, 41, 1027-1037 (2010) · Zbl 0645.58013
[3] Bartsch, T.; Wang, Z-Q, Existence and multiplicity results for some superlinear elliptic problems on ℝ^N, Comm Partial Differential Equations, 20, 1725-1741 (1995) · Zbl 0837.35043
[4] Batkam, C.; Júnior, J., Schrödinger-Kirchhoff-Poisson type systems, Commun Pure Appl Anal, 15, 429-444 (2016) · Zbl 1333.35052
[5] Benci, V.; Cerami, G., Positive solutions of some nonlinear elliptic problems in exterior domains, Arch Ration Mech Anal, 99, 283-300 (1987) · Zbl 0635.35036
[6] Benci, V.; Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol Methods Nonlinear Anal, 11, 283-293 (1998) · Zbl 0926.35125
[7] Bernstein, S., Sur une classe d’equations fonctionnelles aux dérivées partielles, Izv Akad Nauk SSSR Ser Mat, 4, 17-26 (1940) · JFM 66.0471.01
[8] Bonheure, D.; Cosmo, J.; Mercuri, C., Concentration on circles for nonlinear Schröodinger-Poisson systems with unbounded potentials vanishing at infinity, Commun Contemp Math, 14, 1250009 (2012) · Zbl 1250.35077
[9] Bonheure, D.; Mercuri, C., Embedding theorems and existence results for nonlinear Schröodinger-Poisson systems with unbounded and vanishing potentials, J Differential Equations, 251, 1056-1085 (2011) · Zbl 1223.35130
[10] Cerami, G.; Devillanova, G.; Solimini, S., Infinitely many bound states for some nonlinear scalar field equations, Calc Var Partial Differential Equations, 23, 139-168 (2005) · Zbl 1078.35113
[11] Chen, J.; Tang, X.; Gao, Z., Existence of multiple solutions for modified Schrödinger-Kirchhoff-Poisson type systems via perturbation method with sign-changing potential, Comput Math Appl, 73, 505-519 (2017) · Zbl 1375.35175
[12] Colin, M.; Jeanjean, L., Solutions for a quasilinear Schrodinger equation: A dual approach, Nonlinear Anal, 56, 213-226 (2004) · Zbl 1035.35038
[13] Du, X.; Mao, A., Existence and multiplicity of nontrivial solutions for a class of semilinear fractional Schröodinger equations, J Funct Spaces, 4, 1-7 (2017) · Zbl 1377.35072
[14] Feng, X.; Zhang, Y., Existence of non-trivial solution for a class of modified Schrödinger-Poisson equations via perturbation method, J Math Anal Appl, 442, 673-684 (2016) · Zbl 1342.35331
[15] He, Y.; Li, G., Standing waves for a class of Kirchhoff type problems in ℝ^3 involving critical Sobolev exponents, Calc Var Partial Differential Equations, 54, 3067-3106 (2015) · Zbl 1328.35046
[16] He, Y.; Li, G.; Peng, S., Concentrating bound states for Kirchhoff type problems in ℝ^3 involving critical Sobolev exponents, Adv Nonlinear Stud, 14, 483-510 (2014) · Zbl 1305.35033
[17] Kirchhoff, G., Vorlesungen Uber Mechanik (1883), Leipzig: Teubner, Leipzig · JFM 08.0542.01
[18] Li, F.; Song, Z.; Zhang, Q., Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, Appl Anal, 96, 2906-2916 (2017) · Zbl 1379.35141
[19] Lieb, E.; Loss, M., Analysis (1997), Providence: Amer Math Soc, Providence · Zbl 0966.26002
[20] Lions, J., On some questions in boundary value problems of mathematical physics, North-Holland Math Stud, 30, 284-346 (1978) · Zbl 0404.35002
[21] Liu, J.; Liu, X.; Wang, Z-Q, Sign-changing solutions for modified nonlinear Schrodinger equation, Sci Sin Math, 45, 1319-1336 (2015) · Zbl 1488.35502
[22] Liu, J.; Wang, Y.; Wang, Z-Q, Soliton solutions for quasilinear Schrodinger equations, II, J Differential Equations, 187, 473-493 (2003) · Zbl 1229.35268
[23] Liu, J.; Wang, Y.; Wang, Z-Q, Solutions for quasilinear Schröodinger equations via the Nehari method, Comm Partial Differential Equations, 29, 879-901 (2004) · Zbl 1140.35399
[24] Liu, J.; Wang, Z-Q, Soliton solutions for quasilinear Schroödinger equations, I, Proc Amer Math Soc, 131, 441-448 (2003) · Zbl 1229.35269
[25] Liu, J.; Wang, Z-Q, Multiple solutions for quasilinear elliptic equations with a finite potential well, J Differential Equations, 257, 2874-2899 (2014) · Zbl 1298.35198
[26] Liu, X.; Liu, J.; Wang, Z-Q, Quasilinear elliptic equations via perturbation method, Proc Amer Math Soc, 141, 253-263 (2013) · Zbl 1267.35096
[27] Liu, Z.; Sun, J., Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J Differential Equations, 172, 257-299 (2001) · Zbl 0995.58006
[28] Liu, Z.; Wang, Z-Q; Zhang, J., Infinitely many sign-changing solutions for the nonlinear Schrodinger-Poisson system, Ann Mat Pura Appl (4), 195, 775-794 (2016) · Zbl 1341.35041
[29] Mao, A.; Chang, H., Kirchhoff type problems in ℝ^N with radial potentials and locally Lipschitz functional, Appl Math Lett, 62, 49-54 (2016) · Zbl 1348.31002
[30] Mao, A.; Jing, R.; Luan, S., Some nonlocal elliptic problem involving positive parameter, Topol Methods Nonlinear Anal, 42, 207-220 (2013) · Zbl 1291.35086
[31] Mao, A.; Luan, S., Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J Math Anal Appl, 383, 239-243 (2011) · Zbl 1222.35092
[32] Mao, A.; Wang, W., Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in ℝ^3, J Math Anal Appl, 459, 556-563 (2018) · Zbl 1382.35102
[33] Mao, A.; Yang, L.; Qian, A., Existence and concentration of solutions of Schroödinger-Poisson system, Appl Math Lett, 68, 8-12 (2017) · Zbl 1371.35033
[34] Mao, A.; Zhang, Z., Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal, 70, 1275-1287 (2009) · Zbl 1160.35421
[35] Mao, A.; Zhu, X., Existence and multiplicity results for Kirchhoff problems, Mediterr J Math, 14, 58 (2017) · Zbl 1371.35059
[36] Mercuri, C., Positive solutions of nonlinear Schrodinger-Poisson systems with radial potential vanishing at infinity, Atti Accad Naz Lincei Rend Lincei Mat Appl, 19, 211-227 (2008) · Zbl 1200.35098
[37] Mercuri, C.; Squassina, M., Global compactness for a class of quasi-linear elliptic problems, Manuscripta Math, 140, 119-144 (2013) · Zbl 1278.35104
[38] Nie, J.; Wu, X., Existence and multiplicity of non-trivial solutions for Schrodinger-Kirchhoff-type equations with radial potential, Nonlinear Anal, 75, 3470-3479 (2012) · Zbl 1239.35131
[39] Pokhohaev, S., On a certain class of quasilinear hyperbolic equations, Mat Sb, 96, 152-166 (1975) · Zbl 0309.35051
[40] Poppenberg, M.; Schmitt, K.; Wang, Z-Q, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc Var Partial Differential Equations, 14, 329-344 (2002) · Zbl 1052.35060
[41] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J Funct Anal, 237, 655-674 (2006) · Zbl 1136.35037
[42] Ruiz, D., On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch Ration Mech Anal, 198, 349-368 (2010) · Zbl 1235.35232
[43] Ruiz, D.; Siciliano, G., A note on the Schrodinger-Poisson-Slater equation on bounded domains, Adv Nonlinear Stud, 8, 179-190 (2008) · Zbl 1160.35020
[44] Shao, M.; Mao, A., Signed and sign-changing solutions of Kirchhoff type problems, J Fixed Point Theory Appl, 20, 2 (2018) · Zbl 1388.35055
[45] Sun, F.; Liu, L.; Wu, Y., Infinitely many sign-changing solutions for a class of biharmonic equation with p-Laplacian and Neumann boundary condition, Appl Math Lett, 73, 128-135 (2017) · Zbl 1377.35084
[46] Wu, X., Multiple solutions for quasilinear Schrödinger equations with a parameter, J Differential Equations, 256, 2619-2632 (2014) · Zbl 1286.35089
[47] Xiong, M.; Liu, X., Sign-changing solutions for quasilinear Schrödinger equations with restraint, Nonlinear Anal, 86, 1-11 (2013) · Zbl 1282.35179
[48] Zou, W., Sign-Changing Critical Point Theory (2008), New York: Springer, New York · Zbl 1159.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.